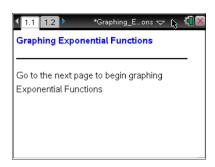
Graphing Exponential Functions MATH NSPIRED

Math Objectives

- Students will infer why the conditions b > 0 and b≠1 are necessary for the function to be exponential.
- Students will determine that for b>1 the function is increasing and for 0 < b < 1 the function is decreasing.
- Students will determine that the y-intercept is always (0,1) and there is no x-intercept.
- Students will determine that for b > 1 the function approaches ∞ as x approaches ∞ and that for 0 < b < 1 the function approaches ∞ as x approaches $-\infty$.
- Students will identify the domain as $(-\infty,\infty)$ and the range as $(0,\infty)$.
- Students will identify the equation of the function's horizontal asymptote as y = 0.
- Students will construct viable arguments & critique the reasoning of others (CCSS Mathematical Practice).

Vocabulary


- exponential function
- end behavior
- intercepts
- · domain and range
- asymptotes
- · increasing and decreasing functions

About the Lesson

- Students will investigate the graphs of the family of exponential functions $f(x) = b^x$.
- As a result, students will:
 - Infer why the conditions b > 0 and $b \ne 1$ are necessary.
 - Determine how the value of b affects the increasing or decreasing behavior of the function.
 - Determine the *y*-intercept, domain, and range.
 - · Describe the end behavior.
 - State the equation of the asymptote.

TI-Nspire™ Navigator™ System

- Use Live Presenter to demonstrate how to use sliders.
- Use Screen Capture to examine patterns that emerge.

TI-Nspire™ Technology Skills:

- Download a TI-Nspire document
- Open a document
- Move between pages
- · Use a minimized slider

Tech Tips:

- Make sure the font size on your TI-Nspire handheld is set to Medium.
- You can hide the entry line by pressing ctrl G.

Lesson Materials:

Student Activity
Graphing_Exponential_
Functions_Student.pdf
Graphing Exponential

Functions_Student.doc

Optional Materials:

Graphing_Exponential_ Functions_Create.doc Graphing_Exponential_ Functions_Create.pdf

TI-Nspire document
Graphing_Exponential_
Function.tns

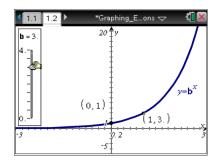
Visit www.mathnspired.com for lesson updates and tech tip videos.

Graphing Exponential Functions

MATH NSPIRED

 Use Quick Poll to assess students' understanding throughout the activity.

Discussion Points and Possible Answers


TI-Nspire Navigator Opportunity: Live Presenter See Note 1 at the end of this lesson.

Teacher Tip: Students can either use the premade file or use the create activity to create the TI-Nspire document file first.

Move to page 1.2.

- Explore several different b-values by dragging the slider.
 - a. Set b = 1. Describe the graph.

Answer: It is the horizontal line y = 1.

b. By definition, for the exponential function $f(x) = b^x$, b cannot equal 1. What mathematical reason can you give for this restriction?

Answer: When b = 1, the function becomes a linear relationship and is no longer an exponential function.

c. Set b = 0. Describe the graph.

Answer: It is a horizontal line for x > 0. It is the line y = 0.

d. By definition, for the exponential function $f(x) = b^x$, b cannot equal 0. What mathematical reason can you give for this restriction?

Answer: When b = 0, the function becomes a linear relationship and is no longer an exponential function.

- 2. Explore several different *b*-values by dragging the slider.
 - a. For what *b*-values is the function increasing? Why is this true?

Graphing Exponential Functions MATH NSPIRED

b. For what *b*-values is the function decreasing? Why is this true?

Answer: When 0 < b < 1, $f(x) = b^x$ is decreasing because $b^n < b^m$ when n > m.

Answer: When b > 1, $f(x) = b^x$ is increasing because $b^n > b^m$ when n > m.

TI-Nspire Navigator Opportunity: Screen Capture See Note 2 at the end of this lesson.

- 3. Explore several different *b*-values by dragging the slider.
 - a. For each b-value, identify the y-intercept of the function. Interpret your results.

Answer: The *y*-intercept is always (0, 1) because $b^0 = 1$ for all *b*.

b. When b > 0, why is there no x-intercept?

Answer: There is no exponent for *b* that would result in an answer of 0.

c. Another special point is when x = 1. Describe the general point regardless of the value of b. Explain your answer.

Answer: When x = 1, the point will always be (1, b) because the base raised to the power of 1 will be the value of b.

TI-Nspire Navigator Opportunity: Screen Capture: See Note 3 at the end of this lesson.

Teacher Tip: If students have not encountered asymptotes before, there may need to be some discussion before they answer the next questions.

- 4. Drag the slider to explore several different *b*-values where b>1.
 - a. What does f(x) approach as x approaches ∞ ? Explain.

Answer: ∞ ; As you choose larger and larger positive exponents for b, the result will be greater and greater.

b. What does f(x) approach as x approaches $-\infty$? Explain.

MATH NSPIRED

Answer: 0; As you choose smaller and smaller negative exponents for *b*, the result will get closer and closer to 0 without ever reaching 0.

c. What is the equation of the horizontal asymptote?

Answer: y = 0

- 5. Drag the slider to explore several different *b*-values where 0 < b < 1.
 - a. What does f(x) approach as x approaches $-\infty$? Explain.

Answer: ∞ ; As you choose smaller and smaller negative exponents for b, the result will get larger and larger.

b. What does f(x) approach as x approaches ∞ ? Explain.

Answer: 0; As you choose larger and larger exponents for *b*, the result will get closer and closer to 0 without ever reaching 0.

c. What is the equation of the horizontal asymptote?

Answer: y = 0

6. Find the domain and range for the family of exponential functions $f(x) = b^x$ where b > 0 and $b \ne 1$.

Answer: The domain is $(-\infty, \infty)$ and the range is $(0, \infty)$.

TI-Nspire Navigator Opportunity: Quick Poll

See Note 5 at the end of this lesson.

7. Wade believes the function $f(x) = b^x$ will eventually intersect the x-axis. Is he correct? Why or why not?

Answer: Wade is incorrect. The function will never cross the *x*-axis. It will only approach the *x*-axis.

TI-Nspire Navigator Opportunity: Quick Poll

See Note 6 at the end of this lesson.

Graphing Exponential Functions

MATH NSPIRED

8. Eric believes that for b > 1 the function $f(x) = b^x$ increases on only one side of the *y*-axis. Is he correct? Why or why not?

Answer: Eric is incorrect. The function increases more quickly on one side of the *y*-axis, but it increases over the entire domain.

TI-Nspire Navigator Opportunity: Live Presenter See Note 7 at the end of this lesson.

Extension: Students have been considering functions of the form $f(x) = b^x$, where b > 0, $b \ne 1$. Ask students to make conjectures about the characteristics and behavior of the function when b < 0.

Wrap Up

Upon completion of the discussion, the teacher should ensure that students understand that for graphs of $f(x) = b^x$:

- The conditions b > 0 and $b \ne 1$ are necessary.
- For b > 1 the function is increasing, and for 0 < b < 1 the function is decreasing.
- The *y*-intercept is always (0, 1) and there is never an *x*-intercept.
- For b > 1 the function approaches ∞ as x approaches ∞ .
- For 0 < b < 1 the function approaches ∞ as x approaches $-\infty$.
- The domain is $(-\infty,\infty)$ and the range is $(0,\infty)$.
- The function has a horizontal asymptote of y = 0.

TI-Nspire Navigator

Note 1

Before the lesson, *Live Presenter*: You may want to demonstrate or have a student use Live Presenter to show how to change the *b*-values by dragging the slider.

Note 2

Question 2a and 2b, Screen Capture: Take a Screen Capture of page 1.2 when students are on different *b*-values. As a class, discuss the various cases that occur.

Note 3

Question 3a and 3b, Screen Capture: Take a Screen Capture of page 1.2 when students are on different *b*-values. As a class, discuss the various cases that occur.

Graphing Exponential Functions MATH NSPIRED

Note 4

Question 4a – 4f, Screen Capture: Take a Screen Capture of page 1.2 when students are on different *b*-values. As a class, discuss the various cases that occur.

Note 5

Question 6, Quick Poll (Open Response): Send two Open Response Quick Polls, asking students to submit their domain and range. If students struggle to identify the domain and range, consider taking a Screen Capture and discussing how, for all graphs, the possible *x*- and .*y*-values are similar.

Note 6

Question 7, *Quick Poll (Open Response)*: Send an Open Response Quick Poll, asking students to submit their answer to Question 7.

Note 7

Question 8, Quick Poll (Open Response): Send an Open Response Quick Poll, asking students to submit their answer to Question 8.