Graphing Exponential Functions Student Activity

Name _____ Class

Open the TI-Nspire document Graphing_Exponential_Functions.tns.

This activity explores the family of exponential functions, $\mathbf{f}(x) = \mathbf{b}^x$ where $\mathbf{b} > 0$ and $\mathbf{b} \ne 1$. You will investigate the graphs of exponential functions and examine general characteristics such as end behavior, domain, and range.

Move to page 1.2.

- Press ctrl ▶ and ctrl ◀ to navigate through the lesson.
- 1. Explore several different **b**-values by dragging the slider.
 - a. Set $\mathbf{b} = 1$. Describe the graph.
 - b. By definition, for the exponential function $\mathbf{f}(x) = \mathbf{b}^x$, *b* cannot equal 1. What mathematical reason can you give for this restriction?
 - c. Set $\mathbf{b} = 0$. Describe the graph.
 - d. By definition, for the exponential function $\mathbf{f}(x) = \mathbf{b}^x$, \mathbf{b} cannot equal 0. What mathematical reason can you give for this restriction?
- 2. Explore several different **b**-values by dragging the slider.
 - a. For what **b**-values is the function increasing? Why is this true?
 - b. For what **b**-values is the function decreasing? Why is this true?
- 3. Explore several different **b**-values by dragging the slider.
 - a. For each **b** -value, identify the *y*-intercept of the function. Interpret your results.
 - b. When $\mathbf{b} > 0$, why is there no *x*-intercept?

Graphing Exponential Functions Student Activity

Name	
Class	

- c. Another special point is when x = 1. Describe the general point regardless of the value of b. Explain your answer.
- 4. Drag the slider to explore several different b-values where $\mathbf{b} > 1$.
 - a. What does f(x) approach as x approaches ∞ ? Explain.
 - b. What does f(x) approach as x approaches $-\infty$? Explain.
 - c. What is the equation of the horizontal asymptote?
- 5. Drag the slider to explore several different \mathbf{b} -values where $0 < \mathbf{b} < 1$.
 - a. What does f(x) approach as x approaches $-\infty$? Explain.
 - b. What does f(x) approach as x approaches ∞ ? Explain.
 - c. What is the equation of the horizontal asymptote?
- 6. Find the domain and range for the family of exponential functions $\mathbf{f}(x) = \mathbf{b}^x$ where $\mathbf{b} > 0$ and $\mathbf{b} \neq 1$.
- 7. Wade believes the function $\mathbf{f}(x) = \mathbf{b}^x$ will eventually intersect the *x*-axis. Is he correct? Why or why not?
- 8. Eric believes that for b>1, the function $f(x) = b^x$ increases on only one side of the *y*-axis. Is he correct? Why or why not?