Exploring Taylor Polynomials with CAS

Concepts

If a function f has derivatives of all orders, then under certain conditions we can write f as a Taylor series centered at a :

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

In the case where $a=0$, the Taylor series becomes
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots$
This is called a Maclaurin series.

This expression means that $f(x)$ is the limit of the sequence of partial sums. The partial sums are

$$
\begin{aligned}
T_{n}(x) & =\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

The expression for $T_{n}(x)$ is a polynomial of degree $n . T_{n}(x)$ is called the n th-degree Taylor polynomial of f at $x=a$, or centered at a.

Course and Exam Description Unit

Section 10.11: Finding Taylor Polynomial Approximations of Functions
Section 10.14: Finding Taylor or Maclaurin Series for a Function

Calculator Files

Taylor_Polynomials_CAS.tns

Exploring Taylor Polynomials with CAS

Using the Document

Taylor_Polynomials_CAS: This calculator file provides a tool for generating and graphing Taylor polynomials. The degree of the Taylor polynomial is changed using the arrow clicker for n, and the value for a can be changed by dragging the point on the x-axis or by entering a new x-coordinate in the ordered pair displayed on the graph screen.

Page 1.1

	This introductory screen provides information for
CALCULUS (TI-Nspire CAS) A	constructing and graphing a Taylor polynomial for a function $f 1(x)$. This function, $f 1(x)$, is defined on Page
Taylor polynomials	1.2, a Graphs page. Once the function is defined, the degree of the Taylor polynomial is set using the arrow
Define $\mathrm{f} 1(\mathrm{x})$ on the graph page.	clicker. The value of a, the center of the Taylor
Use the arrow clicker to specify the degree of the Taylor polynomial for $\mathrm{f} 1(\mathrm{x})$.	polynomial, is set by moving the corresponding point on the x-axis or by entering a new x-coordinate in the ordered
Slide point a on the x-axis to change center of expansion for the Taylor polynomial.	pair displayed on the graph screen.

Page 1.2

Page 1.3

Exploring Taylor Polynomials with CAS

MATH Nspired \square

Suggested Applications and Extensions

1. (a) Find the Taylor polynomials up to degree 7 for $f(x)=\sin x$ centered at $a=0$.

Examine these graphs as n increases.
(b) Evaluate f and these Taylor polynomials at $x=\frac{\pi}{4}, \frac{\pi}{2}$, and π.
(c) Explain how the Taylor polynomials converge to $f(x)$.
2. Find the Taylor polynomial $T_{5}(x)$ for the function f centered at the number a. Observe how the graphs of the Taylor polynomials change as n increases, and find an interval in which the Taylor polynomial is a good approximation to f.
(a) $f(x)=e^{x}, \quad a=-1$
(b) $f(x)=\cos x, \quad a=\frac{\pi}{6}$
(c) $f(x)=\ln x, \quad a=1$
(d) $f(x)=x \sin x, \quad a=\frac{\pi}{2}$
(e) $f(x)=x \tan ^{-1} x, \quad a=-\frac{\pi}{4}$
(f) $f(x)=x^{2} e^{-x}, \quad a=\frac{1}{2}$
3. Find the Taylor polynomial $T_{5}(x)$ for the function f centered at 0 . Observed how the graphs change as n increases, find an interval in which the Taylor polynomial is a good approximation to f, and find $T_{5}(b)$.
(a) $f(x)=(1-x)^{-3} \quad b=-\frac{1}{4}$
(b) $f(x)=\ln (1+x) \quad b=\frac{1}{2}$
(c) $f(x)=e^{-x / 2}, \quad b=2$
(d) $f(x)=3^{x}, \quad b=-\frac{1}{2}$
(e) $f(x)=x \tan x, \quad b=\frac{\pi}{4}$
(f) $f(x)=\frac{1}{1+x^{2}}, \quad b=1$
4. Find the Taylor polynomial $T_{5}(x)$ for the function $f(x)=x^{5}-3 x^{3}+x$ centered at $a=1$. Explain this result.
5. (a) Find the Taylor polynomial $T_{3}(x)$ for the function $f(x)=e^{x^{2}}$ centered at $a=0$.
(b) Find the Taylor polynomial $T_{3}(x)$ for the function $g(x)=\ln \left(x^{2}+1\right)$ centered at $a=0$.
(c) Find the Taylor polynomial $T_{3}(x)$ for the function $h(x)=e^{x^{2}} \ln \left(x^{2}+1\right)$ centered at $a=0$. Explain how this Taylor polynomial is related to those found in parts (a) and (b).

