Exploring Taylor Polynomials with CAS

MATH NSPIRED

Concepts

If a function f has derivatives of all orders, then under certain conditions we can write f as a Taylor series centered at a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

In the case where a = 0, the Taylor series becomes

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$$

This is called a Maclaurin series.

This expression means that f(x) is the limit of the sequence of partial sums. The partial sums are

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$

The expression for $T_n(x)$ is a polynomial of degree *n*. $T_n(x)$ is called the *n*th-degree Taylor polynomial of f at x = a, or centered at a.

Course and Exam Description Unit

Section 10.11: Finding Taylor Polynomial Approximations of Functions Section 10.14: Finding Taylor or Maclaurin Series for a Function

Calculator Files

Taylor_Polynomials_CAS.tns

MATH NSPIRED

Using the Document

Taylor_Polynomials_CAS: This calculator file provides a tool for generating and graphing Taylor polynomials. The degree of the Taylor polynomial is changed using the arrow clicker for *n*, and the value for *a* can be changed by dragging the point on the *x*-axis or by entering a new *x*-coordinate in the ordered pair displayed on the graph screen.

Page 1.1

Page 1.2

Page 1.3

【 1.1 1.2 1.3 ▶ *TaylorCAS RAD $t(x):=taylor(f1(x),x,n,a) \cdot Done$ $t(x) \cdot 0$ $t(\pi) \cdot 0$]	The function <i>t</i> is defined to be the expression for the <i>n</i> th- degree Taylor polynomial centered at <i>a</i> . The polynomial is displayed by the second Math Box. The last Math Box is used to evaluate this Taylor polynomial at a specific value.
---	---

Exploring Taylor Polynomials with CAS

MATH NSPIRED

Suggested Applications and Extensions

- 1. (a) Find the Taylor polynomials up to degree 7 for $f(x) = \sin x$ centered at a = 0. Examine these graphs as *n* increases.
 - (b) Evaluate f and these Taylor polynomials at $x = \frac{\pi}{4}, \frac{\pi}{2}$, and π .
 - (c) Explain how the Taylor polynomials converge to f(x).
- 2. Find the Taylor polynomial $T_5(x)$ for the function f centered at the number a. Observe how the graphs of the Taylor polynomials change as n increases, and find an interval in which the Taylor polynomial is a good approximation to f.
 - (a) $f(x) = e^x$, a = -1
 - (b) $f(x) = \cos x$, $a = \frac{\pi}{6}$
 - (c) $f(x) = \ln x$, a = 1
 - (d) $f(x) = x \sin x$, $a = \frac{\pi}{2}$

 - (e) $f(x) = x \tan^{-1} x$, $a = -\frac{\pi}{4}$ (f) $f(x) = x^2 e^{-x}$, $a = \frac{1}{2}$
- 3. Find the Taylor polynomial $T_5(x)$ for the function f centered at 0. Observed how the graphs change as n increases, find an interval in which the Taylor polynomial is a good approximation to f, and find $T_5(b)$.
 - (a) $f(x) = (1-x)^{-3}$ $b = -\frac{1}{4}$
 - (b) $f(x) = \ln(1+x)$ $b = \frac{1}{2}$
 - (c) $f(x) = e^{-x/2}$, b = 2
 - (d) $f(x) = 3^x$, $b = -\frac{1}{2}$
 - (e) $f(x) = x \tan x$, $b = \frac{\pi}{4}$
 - (f) $f(x) = \frac{1}{1 + r^2}$, b = 1
- 4. Find the Taylor polynomial $T_5(x)$ for the function $f(x) = x^5 3x^3 + x$ centered at a = 1. Explain this result.
- 5. (a) Find the Taylor polynomial $T_3(x)$ for the function $f(x) = e^{x^2}$ centered at a = 0.
 - (b) Find the Taylor polynomial $T_3(x)$ for the function $g(x) = \ln(x^2 + 1)$ centered at a = 0.
 - (c) Find the Taylor polynomial $T_3(x)$ for the function $h(x) = e^{x^2} \ln(x^2 + 1)$ centered at a = 0. Explain how this Taylor polynomial is related to those found in parts (a) and (b).