Name	
Class	

Open the TI-Nspire document First_Derivative_Test.tns.

The first derivative test uses the sign of the first derivative to check whether a critical point for a function **f** is the location of a local maximum, local minimum, or neither. This activity will illustrate how and why the test works.

You will want to review these important definitions:

Definition: A function **f** has a critical point at c if

- the value c is in the domain of the function f (in other words, f(c) is defined) and
- either f'(c) = 0 or f'(c) is undefined.

Definition: A function has a local maximum at c if $\mathbf{f}(c) \ge \mathbf{f}(x)$ when x is near c (that is, if $\mathbf{f}(c) \ge \mathbf{f}(x)$ for all x in some open interval containing c). Similarly, \mathbf{f} has a local minimum at c if $\mathbf{f}(c) \le \mathbf{f}(x)$ when x is near c (if $\mathbf{f}(c) \ge \mathbf{f}(x)$ for all x in some open interval containing c).

Move to page 1.2.

1. Each page of problem 1 in the document has a graph of a function with a single critical point.

Tech Tip: Use the up and down arrows to easily change the value of *x*. Also you can select the value of *x* and type in the number.

Tech Tip: To change the value of x, tap on the point to highlight it. Then, begin sliding it.

a. Grab the white point on the *x*-axis and move it to see the slope of the tangent line change as you move along each graph. Complete the table below.

Function graph on page	Critical point (and reason why it is a critical point)	Location of local max, local min, or neither	Intervals where slope of tangent line is positive	Intervals where slope of tangent line is negative
1.2	<i>x</i> =			
1.3	X =			
1.4	X =			
1.5	<i>x</i> =			

b. Summarize your findings for the four graphs.

Name	
Class	

Move to page 2.1.

- 2. The graph shown here is that of a function with six different critical points indicated on the *x*-axis (by black dots). Use the up/down arrows at the upper left (or grab and drag) to move the white point along the *x*-axis and see the slope of the tangent line (when it exists).
 - a. Explain why each of these marked points is a critical point, and classify each as the location of a local minimum, local maximum, or neither.

Critical point	Reason why it is a critical point	Location of local max, local min, or neither	Describe any change of sign of f' at x = a
x = -8			
x = -6			
x = -4			
x = -2			
x = 1			
x = 5			

b.	Use what you ha	ave learned to	complete t	the definition	of the first	derivative	test below:
----	-----------------	----------------	------------	----------------	--------------	------------	-------------

Suppose **f** is continuous at the critical point *a*:

•	If the first derivative f	' changes sigr	from positive t	to negative at <i>a</i> ,	then $f(a)$ is

•	If the first	derivative f	' changes	sign from	negative to	positive	at a,	then	f (a)	is
---	--------------	---------------------	-----------	-----------	-------------	----------	-------	------	--------------	----

• If the first derivative f' does not change sign at a, then f has	
--	--

.