

Name _	
Class	

Open the TI-Nspire document Properties_of_Logarithms.tns.

This activity explores the product property, the quotient property, and the power property of logarithms both algebraically and graphically.

1.1 1.2 1.3 > Properthms	RAD 📋	×
Properties of Logarithms		
Go to the next page to begin exploring		
properties of logarithms.		
Press tab to move between the sliders	, and	
arrow keys to change values. Press es	scape	
to reset.		

Move to page 1.2.

For this activity, the expression used is $log_2(x)$. The investigations also work for any base > 0 and base \neq 1.

- 1. As you drag the sliders for *m* and *n*, note what happens as these values are substituted into the four expressions.
 - a. Find which expressions, if any, appear to be equivalent independent of the values of *m* and *n*.
 - b. Set m = 8 and n = 4. Substitute these values into the logarithmic expressions you found to be equivalent in part 1a, and simplify these expressions to show they are indeed equivalent.
 - c. Use the expressions you found in parts 1a and 1b to write a general logarithmic property for $\log_a mn$, where a is a real number, a > 0 and $a \ne 1$.

d. Explain how the operations in the logarithmic property in part 1c relate to the operations in the exponential property $a^{man}_{i} = 1$.

Student Activity

Name	
Class	
Class	

Move to page 1.5

Now let's look at this same idea but graphically. Suppose you wanted to simplify the logarithm of a product, like $\log 6a$. Think about how you might go about doing this. Let's start by defining a new variable b = 6a.

- Step a: At the top of column 1, name this list a. Enter at least 10 values for a, that are in the domain of the logarithmic function.
- Step b: At the top of column 2, name this list b. Move down to the second row and enter a formula that will calculate b = 6a, from the values in column 1.
- Step c: Move to **page 1.6** and click on the bottom to add variable a and click on the left to add variable b.
- 2. Describe the shape of the graph. Discuss with a classmate if it is what you expected. Share your results with the class.
- Step d: Move back to **page 1.5**. Now we will define two new variables, x and y. Let $x = \log a$ and $y = \log b$. At the top of the third column, name it x. Move down to the second row and enter a formula that calculates x from the values in column 1. At the top of the fourth column, name it y. Move down to the second row and enter a formula that calculates y from the values in column 2.
- Step e: Move to page 1.7 and click on the bottom to add variable x and click on the left to add variable y.

The data appear linear. Find the equation of a line through these points by pressing **menu**, **4 Analyze**, **6 Regression**, **1 Linear (mx + b)**.

- 3. Write down the equation of the line through these points.
- 4. Find the y-intercept of the line.

You should have found that the equation of the line was y = x + 0.778151. Think about where this y - intercept comes from. (Here's a hint: Try raising 10 to the 0.778151 power.)

5. Using logs, find what 0.778151 is.

Name Class

6. Since $10^{0.778151} \approx _____, \log(6) \approx ____.$

You have found that $y = \log 6 + x$. Think about what this means. Substitute to rewrite this as an equation in terms of a. The explanation for each step is given to the right.

$y = \log 6 + x$	Equation of the line
	$x = \log a$ and $y = \log b$
	b = 6a

Product Property of Logarithms

For a > 0 and b > 0, $\log ab = \log a + \log b$.

Examples $\log xy$ is written in *expanded form*

as $\log x + \log y$

 $\log 7 + \log z$ is written as a single

logarithm as $\log 7z$

Move to page 1.3

- 7. As you drag the sliders for *m* and *n*, note what happens as these values are substituted into the four expressions.
 - a. Find which expressions, if any, appear to be equivalent independent of the values of *m* and *n*.
 - b. Set m = 8 and n = 4. Substitute these values into the logarithmic expressions you found to be equivalent in part 7a, and simplify these expressions to show they are indeed equivalent.
 - c. Use the expressions you found in parts 7a and 7b to write a general logarithmic property for $\log_a\left(\frac{m}{n}\right)$ where a is a real number, a > 0 and $a \ne 1$.
 - d. Explain how the operations in the logarithmic property in part 7c relate to the operations in the exponential property $\frac{a^m}{a^n} = a^{m-n}$.

Student Activity

Name _	
Class	

Move to page 2.1

Again, let's look at this same idea but graphically. Suppose you wanted to simplify the logarithm of a quotient, like $\log \frac{8}{a}$. Think about how you might go about doing this. Let's start by defining a new variable $b = \frac{8}{a}$.

- Step a: At the top of column 1, name this list a. Enter at least 10 values for a, that are in the domain of the logarithmic function.
- Step b: At the top of column 2, name this list b. Move down to the second row and enter a formula that will calculate $b = \frac{8}{a}$, from the values in column 1.
- Step c: Move to **page 2.2** and click on the bottom to add variable a and click on the left to add variable b.
- 8. Describe the shape of the graph. Discuss with a classmate if it is what you expected. Share your results with the class.
- Step d: Move back to page 2.1. Now we will define two new variables, x and y. Let $x = \log a$ and $y = \log b$. At the top of the third column, name it x. Move down to the second row and enter a formula that calculates x from the values in column 1. At the top of the fourth column, name it y. Move down to the second row and enter a formula that calculates y from the values in column 2.
- Step e: Move to **page 2.3** and click on the bottom to add variable x and click on the left to add variable y.

The data appear linear. Find the equation of a line through these points by pressing **menu**, **4 Analyze**, **6 Regression**, **1 Linear (mx + b)**.

- 9. Write down the equation of the line through these points.
- 10. Find the y-intercept of the line.

You should have found that the equation of the line was y = 0.90309 - x. Think about where this y - intercept comes from.

Class

- 11. Using logs, find what 0.90309 is.
- 12. Since $10^{0.90309} \approx , \log(8) \approx .$

You have found that $y = \log 8 - x$. Think about what this means. Substitute to rewrite this as an equation in terms of a. The explanation for each step is given to the right.

$y = \log 8 - x$	Equation of the line
	$x = \log a$ and $y = \log b$
	$b = \frac{8}{a}$

Quotient Property of Logarithms

For a > 0 and b > 0, $\log ab = \log a + \log b$.

Examples $\log \frac{x}{y}$ is written in expanded form

as $\log x - \log y$

 $\log 7 - \log z$ is written as a single

logarithm as $\log \frac{7}{2}$

Move to page 1.4

- 13. As you drag the sliders for m and n, note what happens as these values are substituted into the three expressions.
 - a. Find which expressions, if any, appear to be equivalent independent of the values of m and n.
 - b. Set m = 4 and n = 3. Substitute these values into the logarithmic expressions you found in part 13a, and simplify these expressions to show they are equivalent.
 - c. Use the expressions you found in parts 13a and 13b to write a general logarithmic property for $\log_a(m)^n$ where a is a real number, a > 0 and $a \ne 1$
 - d. Explain how the operations in the logarithmic property in part 3c relate to the operations in the exponential property $(a^m)^n = a^{mn}$.

Name	
Class	

- e. Use the logarithmic property you proved in part 13c to show that $\log_a a = 1$ for all values of a where a > 0 and $a \ne 1$.
- f. Use the logarithmic property you proved in part 13c to show that $\log_a 1 = 0$ for all values of a where a > 0 and $a \ne 1$.

Move to page 3.1

One final time, let's look at this same idea but graphically. Suppose you wanted to simplify the logarithm of a power, like $\log a^2$. Think about how you might go about doing this. Let's start by defining a new variable $b = a^2$.

- Step a: At the top of column 1, name this list *a*. Enter at least 10 values for *a*, that are in the domain of the logarithmic function.
- Step b: At the top of column 2, name this list b. Move down to the second row and enter a formula that will calculate $b = a^2$, from the values in column 1.
- Step c: Move to **page 3.2** and click on the bottom to add variable a and click on the left to add variable b.
- 14. Describe the shape of the graph. Discuss with a classmate if it is what you expected. Share your results with the class.
- Step d: Move back to page 3.1. Now we will define two new variables, x and y. Let $x = \log a$ and $y = \log b$. At the top of the third column, name it x. Move down to the second row and enter a formula that calculates x from the values in column 1. At the top of the fourth column, name it y. Move down to the second row and enter a formula that calculates y from the values in column 2.
- Step e: Move to **page 3.3** and click on the bottom to add variable x and click on the left to add variable y.

The data appear linear. Find the equation of a line through these points by pressing **menu**, **4 Analyze**, **6 Regression**, **1 Linear (mx + b)**.

Name Class _____

- 15. Write down the equation of the line through these points.
- 16. Find the y-intercept of the line.

You should have found that the equation of the line was y = 2x. Think about what this means.

You have found that $y = \log 6 + x$. Think about what this means. Substitute to rewrite this as an equation in terms of a. The explanation for each step is given to the right.

y = 2x	Equation of the line
$\log b = 2\log a$	$x = \log a$ and $y = \log b$
$\log a^2 = 2\log a$	$b = a^2$

Power Property of Logarithms

Examples $\log x^3$ can be written as $3 \log x$

For a > 0, $\log a^b = b \log a$.

 $8 \log x$ can be written as $\log x^8$

Further IB Math Extension

Using the properties discussed in this activity, find the solution of:

$$\log_3 x - 2\log_3 2 = 3 - \log_3 2$$