Open the TI-Nspire document Transformations_of_Exponential_ Functions.tns.

The purpose of this activity is to examine the family of exponential functions of the form $f(x)=c b^{x+a}$ where a, b, and c are parameters. At the end of this activity, you will use your results to match each function with its corresponding graph.

$1.12 .1 \quad 3.1$
PreCalculus
Transformations of Expor.revential Functions
Consider the family of exponential functions
characterized by the parameters a, b, and c of the
form $\mathrm{f} 1(\mathrm{x})=\mathrm{c} b^{x+a}$
Use the sliders in the left pane of each page to discover the effect of each parameter on the graph of f 1 .

Note: The parameter b is the base of the exponential function and $b>0, b \neq 1$.

Move to page 2.1.

Press ctril and ctril to navigate through the lesson.

1. The graph of $y=f 1(x)=b^{x}$ is shown in the right panel. Click the arrows in the left panel to change the value of b, and observe the changes in the graph of $f 1$.
a. Explain why for every value of b, the graph of $f 1$ passes through the point $(0,1)$.
b. For $b>1$, describe the graph of $y=f 1(x)=b^{x}$.
c. For $0<b<1$, describe the graph of $y=f 1(x)=b^{x}$.
d. Find the domain and range of function $f 1(x)=b^{x}$.
e. Does the graph of $y=b^{x}$ intersect the x-axis? Explain why or why not.

Move to page 3.1.

2. The graph of $y=f 1(x)=b^{x+a}$ is shown in the right panel. For a specific value of b, click the arrows to change the value of a and observe the changes in the graph of $f 1$. Repeat this process for other values of b.
a. Describe the effect of the parameter a on the graph of $y=b^{x+a}$. Discuss the effects of both positive and negative values of a.

Move to page 4.1.

3. The graph of $y=f 1(x)=c \cdot b^{x+a}$ is shown in the right panel. For specific values of a and b, click the arrows to change the value of c, and observe the changes in the graph of $f 1$. Repeat this process for other values of a and b.
a. Describe the effect of the parameter c on the graph of $y=c \cdot b^{x+a}$. Discuss the effects of both positive and negative values of c.

Move to page 5.1.

4. Display the graphs of $y=f 1(x)=3^{x+2}$ and $y=f 2(x)=9 \cdot 3^{x}$.
a. Describe the similarities between these two graphs. Use the properties of exponents to justify your answer.
b. Insert a new problem, and display the graph of $y=f 1(x)=3^{x-2}$. Use the properties of exponents to find a function of the form $f 2(x)=c \cdot 3^{x}$ such that the graphs of $f 1$ and $f 2$ are the same. Verify your answer.
c. Use your answers to parts (a) and (b) to explain the relationship between a horizontal translation and a vertical stretch of the graph of an exponential function.
\qquad
\qquad
5. Match each equation with its corresponding graph.
(a) $f(x)=3^{x-4}$
(b) $f(x)=-\left(\frac{1}{3}\right)^{x}$
(c) $f(x)=(0.7)^{x-4}$
(d) $f(x)=-2(0.1)^{x+3}$
(e) $f(x)=e^{x}$
(f) $f(x)=-\left(\frac{1}{2}\right) \cdot \pi^{x}$

Note: The function in part (e) is the "natural" exponential function and involves the number $e \approx 2.71828$...
(i)

(iii)

(v)

(ii)

(iv)

(vi)

