Student Activity

Open the TI-Nspire document What_is_Log.tns.

You may have noticed that above [10x] is [log]. What does log mean? Why is [log] placed above the exponential key? You will investigate these questions in this activity.

Move to page 1.2.

- 1. The graph of the function $f(x) = 2^x$ is shown.
 - a. What are the domain and range of f(x)?
 - b. Recall that $f(x) = 2^x$ is a one-to-one function, so it has an inverse reflected over the line y = x. What are the domain and range of $f^{-1}(x)$?
 - c. Point P is a point on f(x). Move the Show Reflection slider to Yes to and then move point P. As you do so, point P' invisibly traces the graph of $f^{-1}(x)$. Since f(x) can be written as $y = 2^x$, write a corresponding equation for the inverse.
 - d. The equation $x = 2^y$ cannot be written as a function of y in terms of x without new notation. Move the Show Function slider to Yes. The inverse of f(x) is actually $f^{-1}(x) = \log_2(x)$. In general, $\log_b x = y$ is equivalent to $b^y = x$ for x > 0, b > 0 and $b \neq 1$. Why do you think x and b must be greater than 0? Why can b not be equal to 1?

Name _____

e. Move point P so that its coordinates are (1, 2). The point (1, 2) on $f(x) = 2^x$ indicates that $2^1 = 2$. P' has the coordinates (2, 1). The point (2, 1) on $f^{-1}(x) = \log_2(x)$ indicates that $\log_2 2 = 1$. Use this relationship between exponential expressions and logarithmic expressions to complete the following table. (Move point P as necessary.)

P	P'	Exponential Expression	Logarithmic Expression
(1, 2)	(2, 1)	2 ¹ = 2	log ₂ 2 = 1
(2, 4)			
	(8, 3)		
		2 ⁰ = 1	
		$2^{-1} = \frac{1}{2}$	
$\left(-2, \frac{1}{4}\right)$			
			$\log_2 \frac{1}{8} = -3$

Move to page 1.3.

2. Solve the logarithmic equation $\log_2 32 = y$ using the patterns from question 1. Then, use the slider to change the *n*-value to solve the logarithmic equation. How does the exponential equation verify your result?

Move to page 2.1.

3. Solve the equation $\log_4 \frac{1}{256} = y$. Then, use the slider to change the *n*-value to solve the logarithmic equation. How does the exponential equation verify your result?

\Box		-66-
199	174.00	
	1	\cdot

Name	
Class	

- 4. May a solved the logarithmic equation $log_4 16 = y$. She says the answer is 4 since
 - $4 \times 4 = 16$. Is her answer correct? Why or why not?

5. Alex says that when solving a logarithmic equation in the form $\log_b a = y$, he can rewrite it as $b^a = y$. Is this a good strategy? Why or why not?