

TI-Nspire™ CX Referenzhandbuch

Wichtige Informationen

Außer im Fall anderslautender Bestimmungen der Lizenz für das Programm gewährt Texas Instruments keine ausdrückliche oder implizite Garantie, inklusive aber nicht ausschließlich sämtlicher impliziter Garantien der Handelsfähigkeit und Eignung für einen bestimmten Zweck, bezüglich der Programme und der schriftlichen Dokumentationen, und stellt dieses Material nur im "Ist-Zustand" zur Verfügung. Unter keinen Umständen kann Texas Instruments für besondere, direkte, indirekte oder zufällige Schäden bzw. Folgeschäden haftbar gemacht werden, die durch Erwerb oder Benutzung dieses Materials verursacht werden, und die einzige und exklusive Haftung von Texas Instruments, ungeachtet der Form der Beanstandung, kann den in der Programmlizenz festgesetzten Betrag nicht überschreiten. Zudem haftet Texas Instruments nicht für Forderungen anderer Parteien jeglicher Art gegen die Anwendung dieses Materials.

© 2023 Texas Instruments Incorporated

Die aktuellen Produkte können geringfügig von den Abbildungen abweichen.

Inhaltsverzeichnis

Vorlagen für Ausdrücke	1
Alphabetische Auflistung	7
A	
В	
C	
D	38
E	
F	56
G	64
1	
L	
M	103
N	
0	
P	
Q	
R	
S	
Т	
U	
V	
W	
<u>x</u>	
Z	
Sonderzeichen	197
TI-Nspire™ CX II – Zeichenbefehle	224
Grafikprogrammierung	224
Grafikbildschirm	
Standardansicht und Einstellungen	
Fehlermeldungen des Grafikbildschirms	
Im Grafikmodus ungültige Befehle	226
C	228
D	229
F	
G	
P	236
F:	
U	240

Leere (ungültige) Elemente	241
Tastenkürzel zum Eingeben mathematischer Ausdrücke	243
Auswertungsreihenfolge in EOS™ (Equation Operating System)	245
TI-Nspire CX II – TI-Basic Programmierfunktionen	247
Automatisches Einrücken im Programmierungseditor Verbesserte Fehlermeldungen für TI-Basic	247 247
Konstanten und Werte	250
Fehlercodes und -meldungen	251
Warncodes und -meldungen	260
Allgemeine Informationen	262
Inhalt	263

Vorlagen für Ausdrücke

Hinweis: Siehe auch ^ (Potenz), Seite 201.

Vorlagen für Ausdrücke bieten Ihnen eine einfache Möglichkeit, mathematische Ausdrücke in der mathematischen Standardschreibweise einzugeben. Wenn Sie eine Vorlage eingeben, wird sie in der Eingabezeile mit kleinen Blöcken an den Positionen angezeigt, an denen Sie Elemente eingeben können. Der Cursor zeigt, welches Element eingegeben werden kann.

Verwenden Sie die Pfeiltasten oder drücken Sie tab, um den Cursor zur jeweiligen Position der Elemente zu bewegen, und geben Sie für jedes Element einen Wert oder Ausdruck ein. Drücken Sie enter oder ctri enter, um den Ausdruck auszuwerten.

el:
$\frac{3}{4}$
_

Vorlage Exponent		^ Taste
n ^O	Beispiel:	
Hinweis: Geben Sie den ersten Wert ein, drücken Sie und geben Sie dann den Exponenten ein. Um den Cursor auf die Grundlinie zurückzusetzen, drücken Sie die rechte Pfeiltaste ().	2 ³	8

Vorlage Quadratwurzel		ctrl x2 Tasten
Hinweis: Siehe auch $\sqrt{()}$ (Quadratwurzel), Seite 211.	Beispiel: $ \sqrt{4} $ $ \sqrt{9,16,4} $	2 {3,4,2}

Vorlage n-te Wurzel

Hinweis: Siehe auch root(). Seite 146.

Beispiel:

3/8	2
3 {8,27,15}	{2,3,2.46621}

Vorlage e Exponent

ex Tasten

Potenz zur natürlichen Basis e

Hinweis: Siehe auch e^(), Seite 48.

Example:

 e^1 2.71828182846

Vorlage Logarithmus

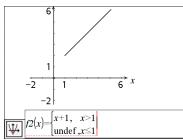
Berechnet den Logarithmus zu einer bestimmten Basis. Bei der Standardbasis 10 wird die Basis weggelassen.

Hinweis: Siehe auch log(), Seite 96.

Beispiel:

Vorlage Stückweise (2 Teile)

Katalog >



Ermöglicht es, Ausdrücke und Bedingungen für eine stückweise definierte Funktion aus zwei-Stücken zu erstellen. Um ein Stück hinzuzufügen, klicken Sie in die Vorlage und wiederholen die Vorlage.

Hinweis: Siehe auch piecewise(), Seite 125.

Beispiel:

Vorlage Stückweise (n Teile)

Ermöglicht es, Ausdrücke und Bedingungen für eine stückweise definierte Funktion aus *n*-Teilen zu erstellen. Fragt nach *n*.

Beispiel:

Siehe Beispiel für die Vorlage Stückweise (2 Teile).

Create Piecewise Function Piecewise Function Number of function pieces Cancel

Hinweis: Siehe auch piecewise(), Seite 125.

Vorlage System von 2 Gleichungen

Erzeugt ein System aus zwei linearen Gleichungen. Um einem vorhandenen System eine Zeile hinzuzufügen, klicken Sie in die Vorlage und wiederholen die Vorlage.

Hinweis: Siehe auch system(), Seite 172.

Beispiel:

solve
$$\begin{cases} x+y=0 \\ x-y=5 \end{cases}$$
, $x,y \end{cases}$ $x=\frac{5}{2}$ and $y=\frac{-5}{2}$
solve $\begin{cases} y=x^2-2 \\ x+2\cdot y=-1 \end{cases}$, $x,y \end{cases}$
 $x=\frac{-3}{2}$ and $y=\frac{1}{4}$ or $x=1$ and $y=-1$

Vorlage System von n Gleichungen

Ermöglicht es, ein System aus N linearen Gleichungen zu erzeugen. Fragt nach N.

Hinweis: Siehe auch system(), Seite 172.

Beispiel:

Siehe Beispiel für die Vorlage Gleichungssystem (2 Gleichungen).

Vorlage Absolutwert

Katalog >

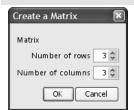
Hinweis: Siehe auch abs(), Seite 7.

Beispiel:

Vorlage Absolutwert		Katalog > 🖳
	$\left\{2, -3, 4, -4^{3}\right\}$	{2,3,4,64}

Vorlage dd°mm'ss.ss"		Katalog > ^{ার্ণ} ্র
[]°[]'[]"	Beispiel:	
Ermöglicht es, Winkel im Format dd°mm'ss.ss" einzugeben, wobei dd für den Dezimalgrad, mm die Minuten und ss.ss die Sekunden steht	30°15'10"	0.528011

Vorlage Matrix (2 x 2)		Katalog > [□ [□
[00]	Beispiel:	
[00]	$ \begin{array}{c c} \hline \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot 5 \end{array} $	5 10 15 20
Frzeugt eine 2 x 2 Matrix		


Vorlage Matrix (1 x 2)		Katalog >
[00].	Beispiel:	
	crossP([1 2],[3 4])	[0 0 -2]

Vorlage Matrix (2 x 1)		Katalog >
[0] [0]	Beispiel:	[0.05]

V. I		الأراسا
Vorlage Matrix (m x n)		Katalog > 🖳
Die Vorlage wird angezeigt, nachdem Sie aufgefordert wurden, die Anzahl der Zeilen und Spalten anzugeben.	Beispiel: $ \frac{4 2 6}{1 2 3} \\ 5 7 9 $	[4 2 9]

Vorlage Matrix (m x n)

Hinweis: Wenn Sie eine Matrix mit einer großen Zeilen- oder Spaltenanzahl erstellen, dauert es möglicherweise einen Augenblick, bis sie angezeigt wird.

Vorlage Summe (Σ)

25

Beispiel:

Hinweis: Siehe auch Σ () (sumSeq), Seite 212.

Vorlage Produkt (Π)

Hinweis: Siehe auch Π () (prodSeq), Seite 212.

Vorlage Erste Ableitung

Beispiel:

$$\frac{d}{dx}(|x|)|_{x=0}$$
 undef

Vorlage Erste Ableitung

Katalog >

Die Vorlage "Erste Ableitung" lässt sich verwenden, um die erste Ableitung an einem Punkt numerisch durch automatische Ableitungsmethoden zu berechnen.

Hinweis: Siehe auch d() (Ableitung), Seite 210.

Vorlage Zweite Ableitung

Katalog >

$$\frac{d^2}{d\Box^2}(\Box)$$

Die Vorlage "Zweite Ableitung" lässt sich verwenden, um die zweite Ableitung an einem Punkt numerisch durch automatische Ableitungsmethoden zu berechnen.

Hinweis: Siehe auch d() (Ableitung), Seite 210.

Beispiel:

 $\frac{d^2}{dx^2} \left(x^3 \right) | x = 3$ 18

Vorlage Bestimmtes Integral

Mit der Vorlage "Bestimmtes Integral" können Sie das bestimmte Integral numerisch berechnen. Hierzu wird dieselbe Methode wie bei nInt() verwendet.

Hinweis: Siehe auch nInt(), Seite 114.

Alphabetische Auflistung

wird der Betrag der Zahl zurückgegeben. Hinweis: Alle undefinierten Variablen werden als reelle Variablen behandelt.

eingesetzt.

Elemente, deren Namen nicht alphabetisch sind (wie +, !, und >) finden Sie am Ende dieses Abschnitts (Seite 197). Wenn nicht anders angegeben, wurden sämtliche Beispiele im standardmäßigen Reset-Modus ausgeführt, wobei alle Variablen als nicht definiert angenommen wurden.

Α

abs() (Absolutwert)		Katalog > 🕼
$abs(Wert1) \Rightarrow Wert$	[π -π]	{1.5708,1.0472}
abs(Liste1)⇒Liste	$\left \left\{\frac{\pi}{2}, \frac{-\pi}{3}\right\}\right $	
abs(Matrix1)⇒Matrix	$ 2-3\cdot i $	3.60555
Gibt den Absolutwert des Arguments zurück.		
Hinweis: Siehe auch Vorlage Absolutwert , Seite 3.		
Ist das Argument eine komplexe Zahl,		

amortTbl()			Ka	atalog >	. J
amortTbl(NPmt,N,I,PV, [Pmt], [FV],	amortTbl(12,60,1	0,5000,,,1	12,12)		-
$[PpY]$, $[CpY]$, $[PmtAt]$, $[WertRunden]$ $\Rightarrow Matrix$	0	0.	0.	5000.	
[wertKunaen] j ⇒Mairix	1	$^{-}41.67$	-64.57	4935.43	
Amortisationsfunktion, die eine Matrix	2	-41.13	-65.11	4870.32	
als Amortisationstabelle für eine Reihe	3	$^{-40.59}$	-65.65	4804.67	
von TVM-Argumenten zurückgibt.	4	$^{-40.04}$	-66.2	4738.47	
	5	-39.49	-66.75	4671.72	
NPmt ist die Anzahl der Zahlungen, die	6	-38.93	-67.31	4604.41	
in der Tabelle enthalten sein müssen. Die	7	-38.37	-67.87	4536.54	
Tabelle beginnt mit der ersten Zahlung.	8	-37.8	-68.44	4468.1	
N I DV Dmt EV DnV CnV und Dmt At	9	-37.23	-69.01	4399.09	
N, I, PV, Pmt, FV, PpY, CpY und PmtAt	10			4329.51	
werden in der TVM-Argumentetabelle (Seite 183) beschrieben.	11	-36.08	-70.16	4259.35	
		-35.49	-70.75	4188.6	_
 Wenn Sie Pmt nicht angeben, wird standardmäßig Pmt=tvmPmt (N,I,PV,FV,PpY,CpY,PmtAt) 					_

amortTbl() Katalog > 🗊

 Wenn Sie FV nicht angeben, wird standardmäßig FV=0 eingesetzt.

 Die Standardwerte für PpY, CpY und PmtAt sind dieselben wie bei den TVM-Funktionen

WertRunden (roundValue) legt die Anzahl der Dezimalstellen für das Runden fest. Standard=2.

Die Spalten werden in der Ergebnismatrix in der folgenden Reihenfolge ausgegeben: Zahlungsnummer, Zinsanteil, Tilgungsanteil, Saldo.

Der in Zeile *n* angezeigte Saldo ist der Saldo nach Zahlung *n*.

Sie können die ausgegebene Matrix als Eingabe für die anderen Amortisationsfunktionen Σ Int() und Σ Prn (), Seite 213, und bal(), Seite 16, verwenden.

and (und) Katalog > 13

Boolescher Ausdr1 and Boolescher Ausdr2⇒Boolescher Ausdruck

Boolesche Liste1 and Boolesche Liste2 ⇒Boolesche Liste

Boolesche Matrix1 and Boolesche Matrix2⇒Boolesche Matrix

Gibt "wahr" oder "falsch" oder eine vereinfachte Form des ursprünglichen Terms zurück.

Ganzzahl1and $Ganzzahl2 \Rightarrow Ganzzahl$

Im Hex-Modus:

0h7AC36 and 0h3D5F 0h2C16

Wichtig: Null, nicht Buchstabe O.

Im Bin-Modus:

0b100101 and 0b100 0b100

and (und)

Katalog > 🗐

Vergleicht zwei reelle ganze Zahlen mit Hilfe einer and-Operation Bit für Bit. Intern werden beide ganzen Zahlen in binäre 32-Bit-Zahlen mit Vorzeichen konvertiert. Beim Vergleich der sich entsprechenden Bits ist das Ergebnis dann 1, wenn beide Bits 1 sind; anderenfalls ist das Ergebnis 0. Der zurückgegebene Wert stellt die Bit-Ergebnisse dar und wird im jeweiligen Basis-Modus angezeigt.

Sie können die ganzen Zahlen in jeder Basis eingeben. Für eine binäre oder hexadezimale Eingabe ist das Präfix Ob bzw. Oh zu verwenden. Ohne Präfix werden ganze Zahlen als dezimal behandelt (Basis 10).

Geben Sie eine dezimale ganze Zahl ein, die für eine 32-Bit-Dualform mit Vorzeichen zu groß ist, dann wird eine symmetrische Modulo-Operation ausgeführt, um den Wert in den erforderlichen Bereich zu bringen.

Im Dec-Modus:

37 and 0b100

Hinweis: Eine binäre Eingabe kann bis zu 64 Stellen haben (das Präfix 0b wird nicht mitgezählt). Eine hexadezimale Eingabe kann bis zu 16 Stellen aufweisen.

angle() (Winkel)

Katalog > 🗐

angle(Wert1)⇒Wert

Gibt den Winkel des Arguments zurück, wobei das Argument als komplexe Zahl interpretiert wird.

Im Grad-Modus:

$angle(0+2\cdot i)$	90
---------------------	----

Im Neugrad-Modus:

$$angle(0+3\cdot i)$$
 100

Im Bogenmaß-Modus:

$$\frac{\text{angle}(1+i) \qquad 0.785398}{\text{angle}(\{1+2\cdot i, 3+0\cdot i, 0-4\cdot i\})}$$
$$\{1.10715, 0., -1.5708\}$$

 $angle(Liste1) \Rightarrow Liste$

angle(Matrix1)⇒Matrix

Gibt als Liste oder Matrix die Winkel der Elemente aus Listel oder Matrix l zurück, wobei jedes Element als komplexe Zahl interpretiert wird, die einen zweidimensionalen kartesischen Koordinatenpunkt darstellt.

ANOVA Katalog > 🗐

ANOVA Liste1, Liste2[, Liste3,..., Liste20] [Flag]

Führt eine einfache Varianzanalyse durch, um die Mittelwerte von zwei bis maximal 20 Grundgesamtheiten zu vergleichen. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166)

Flag=0 für Daten, Flag=1 für Statistik

Ausgabevariable	Beschreibung
stat.F	Wert der F Statistik
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
stat.df	Gruppen-Freiheitsgrade
stat.SS	Summe der Fehlerquadrate zwischen den Gruppen
stat.MS	Mittlere Quadrate der Gruppen
stat.dfError	Fehler-Freiheitsgrade
stat.SSError	Summe der Fehlerquadrate
stat.MSError	Mittleres Quadrat für die Fehler
stat.sp	Verteilte Standardabweichung
stat.xbarlist	Mittelwerte der Eingabelisten
stat.CLowerList	95 % Konfidenzintervalle für den Mittelwert jeder Eingabeliste
stat.CUpperList	95 % Konfidenzintervalle für den Mittelwert jeder Eingabeliste

ANOVA2way (ANOVA 2fach)

Katalog > 🗐

ANOVA2way Liste1,Liste2

[,Liste3,...,Liste10][,LevZei]

Berechnet eine zweifache Varianzanalyse, um die Mittelwerte von zwei bis maximal 10 Grundgesamtheiten zu vergleichen. Eine Zusammenfassung der Ergebnisse wird in der Variable *stat.results* gespeichert. (Seite 166)

LevZei=0 für Block

LevZei=2,3,...,Len-1, für Faktor zwei, wobei Len=length(Liste1)=length(Liste2)=...= length(Liste10) und $Len/LevZei\in\{2,3,...\}$

Ausgaben: Block-Design

Ausgabevariable	Beschreibung
stat.F	F Statistik des Spaltenfaktors
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
stat.df	Freiheitsgrade des Spaltenfaktors
stat.SS	Summe der Fehlerquadrate des Spaltenfaktors
stat.MS	Mittlere Quadrate für Spaltenfaktor
stat.FBlock	F Statistik für Faktor
stat.PValBlock	Kleinste Wahrscheinlichkeit, bei der die Nullhypothese verworfen werden kann
stat.dfBlock	Freiheitsgrade für Faktor
stat.SSBlock	Summe der Fehlerquadrate für Faktor
stat.MSBlock	Mittlere Quadrate für Faktor
stat.dfError	Fehler-Freiheitsgrade
stat.SSError	Summe der Fehlerquadrate
stat.MSError	Mittlere Quadrate für die Fehler
stat.s	Standardabweichung des Fehlers

Ausgaben des SPALTENFAKTORS

Ausgabevariable	Beschreibung
stat.Fcol	F Statistik des Spaltenfaktors
stat.PValCol	Wahrscheinlichkeitswert des Spaltenfaktors
stat.dfCol	Freiheitsgrade des Spaltenfaktors
stat.SSCol	Summe der Fehlerquadrate des Spaltenfaktors
stat.MSCol	Mittlere Quadrate für Spaltenfaktor

Ausgaben des ZEILENFAKTORS

Ausgabevariable	Beschreibung
stat.Frow	F Statistik des Zeilenfaktors
stat.PValRow	Wahrscheinlichkeitswert des Zeilenfaktors
stat.dfRow	Freiheitsgrade des Zeilenfaktors
stat.SSRow	Summe der Fehlerquadrate des Zeilenfaktors
stat.MSRow	Mittlere Quadrate für Zeilenfaktor

INTERAKTIONS-Ausgaben

Ausgabevariable	Beschreibung
stat.FInteract	F Statistik der Interaktion
stat.PValInteract	Wahrscheinlichkeitswert der Interaktion
stat.dfInteract	Freiheitsgrade der Interaktion
stat.SSInteract	Summe der Fehlerquadrate der Interaktion
stat.MSInteract	Mittlere Quadrate für Interaktion

FEHLER-Ausgaben

Ausgabevariable	Beschreibung
stat.dfError	Fehler-Freiheitsgrade
stat.SSError	Summe der Fehlerquadrate
stat.MSError	Mittlere Quadrate für die Fehler
S	Standardabweichung des Fehlers

Ans (Antwort) Ans \Rightarrow Wert Gibt das Ergebnis des zuletzt ausgewerteten Ausdrucks zurück. Gibt das Ergebnis des zuletzt $\frac{56}{60+4}$ $\frac{60}{60+4}$

approx() (Approximieren)

Katalog > 🗐

$approx(Wert1) \Rightarrow Zahl$

Gibt die Auswertung des Arguments ungeachtet der aktuellen Einstellung des Modus **Auto oder Näherung** als Dezimalwert zurück, sofern möglich.

Gleichwertig damit ist die Eingabe des Arguments und Drücken von ctri enter.

 $approx(Liste1) \Rightarrow Liste$

 $approx(Matrix1) \Rightarrow Matrix$

Gibt, sofern möglich, eine Liste oder *Matrix* zurück, in der jedes Element dezimal ausgewertet wurde.

$approx\left(\frac{1}{3}\right)$	0.333333
$\overline{\operatorname{approx}\!\left\{\!\left\{\frac{1}{3},\frac{1}{9}\right\}\!\right\}}$	{0.333333,0.111111}
$\overline{\operatorname{approx}(\{\sin(\pi),\cos(\pi)$	(0.,-1.)
${\operatorname{approx}(\left[\sqrt{2} \sqrt{3}\right])}$	[1.41421 1.73205]
$\overline{\operatorname{approx}\!\left[\!\!\left[\frac{1}{3} \frac{1}{9}\right]\!\!\right]}$	[0.333333 0.111111]
approx $\{\sin(\pi),\cos(\pi)\}$	{0,1.}

 $approx(|\sqrt{2}|\sqrt{3}|)$

▶approxFraction()

Katalog > 🗐

6

1.41421 1.73205

Wert \blacktriangleright approxFraction([Tol]) $\Rightarrow Wert$

Liste \blacktriangleright approxFraction([Tol]) \Rightarrow Liste

 $Matrix \triangleright approxFraction([Tol]) \Rightarrow Matrix$

Gibt die Eingabe als Bruch mit der Toleranz *Tol* zurück. Wird *tol* weggelassen, so wird die Toleranz 5.E-14 verwendet.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie @>approxFraction(...) eintippen.

$\frac{1}{2} + \frac{1}{3} + \tan(\pi)$	0.833333
0.8333333333333 ≯ approxFı	raction(5.e-14)
	5

Katalog > 🔯 approxRational() $approxRational(Wert[, Tol]) \Rightarrow Wert$ approxRational (0.333,5·10⁻⁵) 333 1000 $approxRational(Liste[, Tol]) \Rightarrow Liste$ approxRational({0.2,0.33,4.125},5.e-14) $approxRational(Matrix[, Tol]) \Rightarrow Matrix$ 5'100'8 Gibt das Argument als Bruch mit der Toleranz *Tol* zurück. Wird *tol* weggelassen, so wird die Toleranz 5.E-14 verwendet. arccos() Siehe cos⁻¹(), Seite 29 Siehe cosh-1(), Seite 30. arccosh() arccot() Siehe cot⁻¹(), Seite 31. arccoth() Siehe coth⁻¹(), Seite 32. Siehe csc⁻¹(), Seite 35. arccsc()

Siehe csch-1(), Seite 36.

Siehe sec⁻¹(), Seite 151.

Siehe sech-1(), Seite 151.

arccsch()

arcsec()

arcsech()

arcsinh()

Siehe sinh⁻¹(), Seite 162.

arctan()

Siehe tan-1(), Seite 173.

arctanh()

Siehe tanh⁻¹(), Seite 174.

augment() (Erweitern)

Katalog > 📳

{1,-3,2,5,4}

 $augment(Liste1, Liste2) \Rightarrow Liste$

Gibt eine neue Liste zurück, die durch Anfügen von *Liste2* ans Ende von *Liste1*

erzeugt wurde.

augment(Matrix1, Matrix2)⇒Matrix

Gibt eine neue Matrix zurück, die durch Anfügen von *Matrix2* an *Matrix1* erzeugt wurde. Wenn das Zeichen "," verwendet wird, müssen die Matrizen gleiche Zeilendimensionen besitzen, und *Matrix2* wird spaltenweise an *Matrix1* angefügt. Verändert weder *Matrix1* noch *Matrix2*.

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow m1$		$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	2 4
$\begin{bmatrix} 5 \\ 6 \end{bmatrix} \rightarrow m2$			[5] [6]
augment(m1,m2)	1 3	2 4	5 6

augment($\{1,-3,2\},\{5,4\}$)

avgRC() (Durchschnittliche Änderungsrate)

Katalog > 🗐

avgRC(Ausdr1, Var [=Wert] [, Schritt])⇒Ausdruck

 $avgRC(Ausdr1, Var [=Wert] [, Liste1]) \Rightarrow Liste$

 $avgRC(Liste1, Var [=Wert] [, Schritt]) \Rightarrow Liste$

avgRC(Matrix1, Var [=Wert]],

x:=2	2
$\frac{1}{\operatorname{avgRC}(x^2 - x + 2, x)}$	3.001
$\frac{1}{\operatorname{avgRC}(x^2 - x + 2, x, 1)}$	3.1
$\overline{\operatorname{avgRC}(x^2 - x + 2, x, 3)}$	6

Schritt]**)**⇒Matrix

Gibt den rechtsseitigen Differenzenquotienten zurück (durchschnittliche Änderungsrate).

Ausdr1 kann eine benutzerdefinierte Funktion sein (siehe Func).

Wenn Wert angegeben ist, setzt er jede vorausgegangene Variablenzuweisung oder jede aktuelle "| " Ersetzung für die Variable außer Kraft.

Schritt ist der Schrittwert. Wird Schritt nicht angegeben, wird als Vorgabewert 0.001 benutzt.

Beachten Sie, dass die ähnliche Funktion centralDiff() den zentralen Differenzenquotienten benutzt.

В

bal() Katalog > 🗐

bal(NPmt,N,I,PV,[Pmt],[FV],[PpY],[CpY], [PmtAt], [WertRunden]) $\Rightarrow Wert$

 $bal(NPmt,AmortTabelle) \Rightarrow Wert$

Amortisationsfunktion, die den Saldo nach einer angegebenen Zahlung berechnet.

N, I, PV, Pmt, FV, PpY, CpY und PmtAtwerden in der TVM-Argumentetabelle (Seite 183) beschrieben.

NPmt bezeichnet die Zahlungsnummer, nach der die Daten berechnet werden sollen.

N, I, PV, Pmt, FV, PpY, CpY und PmtAtwerden in der TVM-Argumentetabelle (Seite 183) beschrieben.

Wenn Sie Pmt nicht angeben, wird standardmäßig *Pmt*=**tvmPmt** (N,I,PV,FV,PpY,CpY,PmtAt)

bal(5,6,5.75,5	5000	,,12,12)		833.11
tbl:=amortTb	1(6,6	,5.75,50	00,,12,12	
	0	0.	0.	5000.
	1	-23.35	-825.63	4174.37
	2	-19.49	-829.49	3344.88
	3	-15.62	-833.36	2511.52
	4	-11.73	-837.25	1674.27
	5	-7.82	-841.16	833.11
	6	-3.89	-845.09	-11.98
bal(4,tbl)				1674.27

Katalog > 🗓 🕽

bal()

eingesetzt.

- Wenn Sie FV nicht angeben, wird standardmäßig FV=0 eingesetzt.
- Die Standardwerte für PpY, CpY und PmtAt sind dieselben wie bei den TVM-Funktionen.

WertRunden (roundValue) legt die Anzahl der Dezimalstellen für das Runden fest. Standard=2.

bal(NPmt,AmortTabelle) berechnet den Saldo nach jeder Zahlungsnummer NPmt auf der Grundlage der AmortIsationstabelle AmortTabelle. Das Argument AmortTabelle (amortTable) muss eine Matrix in der unter amortTbl(), Seite 7. beschriebenen Form sein.

Hinweis: Siehe auch Σ Int() und Σ Prn(), Seite 213.

▶Base2	Katalog > 🗊

Ganzzahl1 ▶Base2⇒Ganzzahl

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>Base2 eintippen.

Konvertiert *Ganzzahl1* in eine Binärzahl. Dual- oder Hexadezimalzahlen weisen stets das Präfix Ob bzw. Oh auf. Null (nicht Buchstabe O) und b oder h.

0b binäre Zahl

0h hexadezimale Zahl

Eine Dualzahl kann bis zu 64 Stellen haben, eine Hexadezimalzahl bis zu 16.

Ohne Präfix wird *Ganzzahl1* als Dezimalzahl behandelt (Basis 10). Das Ergebnis wird unabhängig vom Basis-Modus binär angezeigt.

Negative Zahlen werden als Binärkomplement angezeigt. Beispiel:

256▶Base2	0b100000000
0h1F▶Base2	0b11111

-1 wird angezeigt als

OhFFFFFFFFFFFFFF im Hex-Modus

Ob111...111 (64 Einsen) im Binärmodus

-263 wird angezeigt als

0h8000000000000000 im Hex-Modus

0b100...000 (63 Nullen) im Binärmodus

Geben Sie eine dezimale ganze Zahl ein, die außerhalb des Bereichs einer 64-Bit-Dualform mit Vorzeichen liegt, dann wird eine symmetrische Modulo-Operation ausgeführt, um den Wert in den erforderlichen Bereich zu bringen. Die folgenden Beispiele verdeutlichen, wie diese Anpassung erfolgt:

263 wird zu -263 und wird angezeigt als

0h8000000000000000 im Hex-Modus

0b100...000 (63 Nullen) im Binärmodus

264 wird zu 0 und wird angezeigt als

0h0 im Hex-Modus

0b0 im Binärmodus

-263 - 1 wird zu 263 - 1 und wird angezeigt als

0h7FFFFFFFFFFFFFF im Hex-Modus

0b111...111 (64 1's) im Binärmodus

▶Base10		Katalog > 🗐
$Ganzzahll ightharpoonup Base10 \Rightarrow Ganzzahl$	0b10011▶Base10	19
	0h1F▶Base10	31

▶Base10

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>Base10 eintippen.

Konvertiert *Ganzzahl1* in eine Dezimalzahl (Basis 10). Ein binärer oder hexadezimaler Eintrag muss stets das Präfix Ob bzw. Oh aufweisen.

0b binäre Zahl

0h hexadezimale Zahl

Null (nicht Buchstabe O) und b oder h.

Eine Dualzahl kann bis zu 64 Stellen haben, eine Hexadezimalzahl bis zu 16.

Ohne Präfix wird *Ganzzahl1* als Dezimalzahl behandelt. Das Ergebnis wird unabhängig vom Basis-Modus dezimal angezeigt.

▶Base16 Katalog > [1]

Ganzzahl1 ▶Base16⇒Ganzzahl

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>Base16 eintippen.

Wandelt *Ganzzahl1* in eine Hexadezimalzahl um. Dual- oder Hexadezimalzahlen weisen stets das Präfix Ob bzw. Oh auf.

0b binäre Zahl

0h hexadezimale Zahl

Null (nicht Buchstabe O) und b oder h.

Eine Dualzahl kann bis zu 64 Stellen haben, eine Hexadezimalzahl bis zu 16.

Ohne Präfix wird *Ganzzahl1* als Dezimalzahl behandelt (Basis 10). Das Ergebnis wird unabhängig vom Basis-Modus hexadezimal angezeigt.

256▶Base16	0h100
0b111100001111▶Base16	0hF0F

▶Base16 Katalog > 🎑

Geben Sie eine dezimale ganze Zahl ein, die für eine 64-Bit-Dualform mit Vorzeichen zu groß ist, dann wird eine symmetrische Modulo-Operation ausgeführt, um den Wert in den erforderlichen Bereich zu bringen.

Weitere Informationen finden Sie unter

Base2, Seite 17.

binomCdf() Katalog > 🕎

 $binomCdf(n,p) \Rightarrow Liste$

binomCdf

(n,p,untereGrenze,obereGrenze)⇒Zahl, wenn untereGrenze und obereGrenze Zahlen sind, Liste, wenn untereGrenze und obereGrenze Listen sind

binomCdf(n,p,obereGrenze)für $P(0 \le X \le obereGrenze) \Rightarrow Zahl$, wenn obereGrenze eine Zahl ist, Liste, wenn obereGrenze eine Liste ist

Berechnet die kumulative Wahrscheinlichkeit für die diskrete Binomialverteilung mit n Versuchen und der Wahrscheinlichkeit p für einen Erfolg in jedem Einzelversuch.

Für $P(X \le obereGrenze)$ setzen Sie untereGrenze=0

binomPdf() Katalog > [2]

 $binomPdf(n,p) \Rightarrow Liste$

binomPdf(*n,p,XWert*)⇒*Zahl*, wenn *XWert* eine Zahl ist, *Liste*, wenn *XWert* eine Liste ist

Berechnet die Wahrscheinlichkeit an einem XWert für die diskrete Binomialverteilung mit n Versuchen und der Wahrscheinlichkeit p für den Erfolg in jedem Einzelversuch.

ceiling() (Obergrenze)

Katalog > 😰

 $ceiling(Wert1) \Rightarrow Wert$

ceiling(.456)

Gibt die erste ganze Zahl zurück, die ≥ dem Argument ist.

Das Argument kann eine reelle oder eine komplexe Zahl sein.

Hinweis: Siehe auch floor().

 $ceiling(Liste1) \Rightarrow Liste$

 $ceiling(Matrix1) \Rightarrow Matrix$

Für jedes Element einer Liste oder Matrix wird die kleinste ganze Zahl, die größer oder gleich dem Element ist, zurückgegeben.

ceiling({-3.1,1,2.5})	{-3.,1,3.}
ceiling $\begin{bmatrix} 0 & -3.2 \cdot i \end{bmatrix}$	0 -3.·i
√[1.3 4]	2. 4

centralDiff(cos(x),x)|x= $\frac{\pi}{2}$

centralDiff()

Katalog > 🗐

-1.

centralDiff(Ausdr1,Var = Wert) [,Schritt]) $\Rightarrow Ausdruck$

centralDiff(Ausdr1,Var[,Schritt])| $Var = Wert \Rightarrow Ausdruck$

centralDiff(Ausdr1,Var [=Wert][,Liste]) $\Rightarrow Liste$

centralDiff(Liste1**,**Var [=Wert][,Schritt]) $\Rightarrow Liste$

centralDiff(Matrix1,Var [=Wert][,Schritt]) $\Rightarrow Matrix$

Gibt die numerische Ableitung unter Verwendung des zentralen Differenzenquotienten zurück.

Wenn *Wert* angegeben ist, setzt er jede vorausgegangene Variablenzuweisung oder jede aktuelle "|" Ersetzung für die Variable außer Kraft.

Schritt ist der Schrittwert. Wird Schritt nicht angegeben, wird als Vorgabewert 0,001 benutzt.

centralDiff() Katalog > 🔯

Wenn Sie *Liste1* oder *Matrix1* verwenden, wird die Operation über die Werte in der Liste oder die Matrixelemente abgebildet.

Hinweis: Siehe auch .

char() (Zeichenstring)		Katalog > 🗐
char(Ganzzahl)⇒Zeichen	char(38)	"&"
Gibt ein Zeichenstring zurück, das das Zeichen mit der Nummer <i>Ganzzahl</i> aus dem Zeichensatz des Handhelds enthält. Der gültige Wertebereich für <i>Ganzzahl</i> ist 0–65535.	char(65)	"A"

χ²2way Katalog > 🕼

χ²2way BeobMatrix

chi22way BeobMatrix

Berechnet eine χ² Testgröße auf Grundlage einer beobachteten Matrix BeobMatrix. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

Informationen zu den Auswirkungen leerer Elemente in einer Matrix finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.χ ²	Chi-Quadrat-Testgröße: sum(beobachtet - erwartet) ² /erwartet
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
stat.df	Freiheitsgrade der Chi-Quadrat-Testgröße
stat.ExpMat	Berechnete Kontingenztafel der erwarteten Häufigkeiten bei Annahme der Nullhypothese
stat.CompMat	Berechnete Matrix der Chi-Quadrat-Summanden in der Testgröße

χ2Cdf()

Katalog > 💷

χ²Cdf

untereGrenze
,obereGrenze,Freigrad)⇒Zahl, wenn
untereGrenze und obereGrenze Zahlen sind,
Liste, wenn untereGrenze und obereGrenze
Listen sind

chi2Cdf

untereGrenze

"obereGrenze,Freiheitsgrad)⇒Zahl, wenn untereGrenze und obereGrenze Zahlen sind, Liste, wenn untereGrenze und obereGrenze Listen sind

Berechnet die Verteilungswahrscheinlichkeit χ^2 zwischen *untereGrenze* und *obereGrenze* für die angegebenen Freiheitsgrade *FreiGrad*.

Für $P(X \le obereGrenze)$ setzen Sie untereGrenze= 0.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

χ²GOF Katalog > ℚ3

χ²GOF BeobListe, expListe, FreiGrad

 $\textbf{chi2GOF} \ BeobListe, expListe, FreiGrad$

Berechnet eine Testgröße, um zu überprüfen, ob die Stichprobendaten aus einer Grundgesamtheit stammen, die einer bestimmten Verteilung genügt. *obsList* ist eine Liste von Zählern und muss Ganzzahlen enthalten. Eine Zusammenfassung der Ergebnisse wird in der Variablen *stat.results* gespeichert. (Seite 166)

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.χ²	Chi-Quadrat-Testgröße: sum((beobachtet - erwartet)²/erwartet
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
stat.df	Freiheitsgrade der Chi-Quadrat-Testgröße
stat.CompList	Liste der Chi-Quadrat-Summanden in der Testgröße

χ2Pdf() Katalog > 💱

 χ^2 Pdf(XWert,FreiGrad) \Rightarrow Zahl, wenn Xwert eine Zahl ist, *Liste*, wenn *XWert* eine Liste ist

chi2Pdf(XWert,FreiGrad) $\Rightarrow Zahl$, wenn XWert eine Zahl ist, Liste, wenn XWert eine Liste ist

Berechnet die

Wahrscheinlichkeitsdichtefunktion (Pdf) einer χ^2 -Verteilung an einem bestimmten XWert für die vorgegebenen Freiheitsgrade FreiGrad.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

ClearAZ (LoschAZ)		Katalog > খুঞ
ClearAZ	$5 \rightarrow b$	5
Löscht alle Variablen mit einem Zeichen	b	5
im aktuellen Problembereich.	ClearAZ	Done
Wenn eine oder mehrere Variablen gesperrt sind, wird bei diesem Befehl eine Fehlermeldung angezeigt und es werden nur die nicht gesperrten Variablen gelöscht. Siehe unLock, Seite 186	b	"Error: Variable is not defined"

ClrErr (LöFehler)	Katalog > 👰
ClrErr	Ein Beispiel für CIrErr finden Sie als Beispiel 2 im Abschnitt zum Befehl Versuche (Try) , Seite 179.

Löscht den Fehlerstatus und setzt die Systemvariable *FehlerCode (errCode)* auf Null.

Das Else im Block Try...Else...EndTry muss ClrErr oder PassErr (ÜbgebFehler) verwenden. Wenn der Fehler verarbeitet oder ignoriert werden soll, verwenden Sie ClrErr. Wenn nicht bekannt ist, was mit dem Fehler zu tun ist, verwenden Sie PassErr, um ihn an den nächsten Error Handler zu übergeben. Wenn keine weiteren Try...Else...EndTry Error Handler unerledigt sind, wird das Fehlerdialogfeld als normal angezeigt.

Hinweis: Siehe auch **PassErr**, Seite 124, und **Try**, Seite 179.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

colAugment() (Spaltenerweiterung)

 $colAugment(Matrix1, Matrix2) \Rightarrow Matrix$

Gibt eine neue Matrix zurück, die durch Anfügen von Matrix2 an MatrixI erzeugt wurde. Die Matrizen müssen gleiche Spaltendimensionen haben, und Matrix2 wird zeilenweise an MatrixI angefügt. Verändert weder MatrixI noch Matrix2.

	Katalog > 🖳
$\begin{bmatrix} 1 & 2 \end{bmatrix}_{\rightarrow m1}$	1 2
3 4	[3 4]
$[5 \ 6] \rightarrow m2$	[5 6]
colAugment(m1,m2)	1 2
	3 4
	5 6

 $colDim[0 \ 1 \ 2]$

colDim() (Spaltendimension)

Katalog > 🗐

 $colDim(Matrix) \Rightarrow Ausdruck$

Gibt die Anzahl der Spalten von *Matrix* zurück.

Hinweis: Siehe auch rowDim().

colNorm() (Spaltennorm)

Katalog > 📳

 $colNorm(Matrix) \Rightarrow Ausdruck$

Gibt das Maximum der Summen der absoluten Elementwerte der Spalten von *Matrix* zurück.

Hinweis: Undefinierte Matrixelemente sind nicht zulässig. Siehe auch **rowNorm** ().

$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	-2 5	$\begin{bmatrix} 3 \\ -6 \end{bmatrix} \rightarrow mat$	$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	-2 5	3 -6
col	Nor	m(mat)			9

conj() (Komplex Konjugierte)

Katalog >

 $conj(Wert1) \Rightarrow Wert$

conj(Liste1)⇒Liste

 $conj(Matrix1) \Rightarrow Matrix$

Gibt das komplex Konjugierte des Arguments zurück.

Hinweis: Alle undefinierten Variablen werden als reelle Variablen behandelt.

$conj(1+2\cdot i)$	1-2·i
$ \operatorname{conj}\begin{bmatrix} 2 & 1 - 3 \cdot i \\ -i & -7 \end{bmatrix} $	$\begin{bmatrix} 2 & 1+3 \cdot i \\ i & -7 \end{bmatrix}$

constructMat()

Katalog > 🗐

constructMat

`Ausdr ,Var1,Var2,AnzZeilen,AnzSpalten) ⇒Matrix

Gibt eine Matrix auf der Basis der Argumente zurück.

Ausdr ist ein Ausdruck in Variablen Var1 und Var2. Die Elemente in der resultierenden Matrix ergeben sich durch Berechnung von Ausdr für jeden inkrementierten Wert von Var1 und Var2.

Var1 wird automatisch von 1 bis AnzZeilen inkrementiert. In jeder Zeile wird Var2 inkrementiert von 1 bis AnzSpalten.

constructMat $\left(\frac{1}{i+j}, i, j, 3, 4\right)$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$
	1	1	1	1
	3	4	5	6
	1	1	1	1
	4	5	6	7]

CopyVar

Katalog > 😰

CopyVar Var1, Var2

CopyVar Var1., Var2.

CopyVar Var1, Var2 kopiert den Wert der Variablen Var1 auf die Variable Var2 und erstellt ggf. Var2. Variable Var1 muss einen Wert haben.

Wenn *Var1* der Name einer vorhandenen benutzerdefinierten Funktion ist, wird die Definition dieser Funktion nach Funktion *Var2* kopiert. Funktion *Var1* muss definiert sein.

Var I muss die Benennungsregeln für Variablen erfüllen oder muss ein indirekter Ausdruck sein, der sich zu einem Variablennamen vereinfachen lässt, der den Regeln entspricht.

CopyVar Var1., Var2. kopiert alle Mitglieder der Var1.-Variablengruppe auf die Var2.-Gruppe und erstellt ggf. Var2..

Var1. muss der Name einer bestehenden Variablengruppe sein, wie die Statistikergebnisse stat. nn oder Variablen, die mit der Funktion LibShortcut() erstellt wurden. Wenn Var2. schon vorhanden ist, ersetzt dieser Befehl alle Mitglieder, die zu beiden Gruppen gehören, und fügt die Mitglieder hinzu, die noch nicht vorhanden sind. Wenn einer oder mehrere Teile von Var2. gesperrt ist/sind, wird kein Teil von Var2. geändert.

Define $a(x) = \frac{1}{x}$	Done
Define $b(x)=x^2$	Done
CopyVar $a,c:c(4)$	1
	$\frac{-}{4}$
CopyVar $b,c:c(4)$	16

aa.a:=45				4 5
aa.b:=6.78			6.	78
CopyVar aa.,bb.			Do	ne
getVarInfo()	aa.a	"NUM" "NUM" "NUM" "NUM"	"[]"	0
	aa.b	"NUM"	"[]"	0
	bb.a	"NUM"	"[]"	0
	bb.b	"NUM"	"[]"	0

corrMat() (Korrelationsmatrix)

corrMat(Liste1,Liste2[,...[,Liste20]])

Berechnet die Korrelationsmatrix für die erweiterte Matrix [*Listel Liste2* . . . *Liste20*].

cos() (Kosinus)

 $cos(Wert1) \Rightarrow Wert$

 $\cos(Liste1) \Rightarrow Liste$

cos(Wert1) gibt den Kosinus des Arguments als Wert zurück.

cos(Liste1) gibt in Form einer Liste für jedes Element in Listel den Kosinus zurück.

Hinweis: Der als Argument angegebene Winkel wird gemäß der aktuellen Winkelmoduseinstellung als Grad, Neugrad oder Bogenmaß interpretiert. Sie können °, G oder ^r benutzen, um den Winkelmodus vorübergend aufzuheben.

$\cos(Quadratmatrix1) \Rightarrow Quadratmatrix$

Gibt den Matrix-Kosinus von Ouadratmatrix1 zurück. Dies ist nicht gleichbedeutend mit der Berechnung des Kosinus jedes einzelnen Elements.

Wenn eine skalare Funktion f(A) auf Ouadratmatrix1 (A) angewendet wird. erfolgt die Berechnung des Ergebnisses durch den Algorithmus:

Berechnung der Eigenwerte (λi) und Eigenvektoren (Vi) von A.

Quadratmatrix1 muss diagonalisierbar sein. Sie darf auch keine symbolischen Variablen ohne zugewiesene Werte enthalten.

Bildung der Matrizen:

$$B = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \lambda_D \end{bmatrix} \text{ and } X = [V_1, V_2, \dots, V_n]$$

Im Grad-Modus:

$\cos\left(\left(\frac{\pi}{4}\right)^r\right)$	0.707107
cos(45)	0.707107
cos({0,60,90})	{1.,0.5,0.}

Im Neugrad-Modus:

cos({0,50,100})	{1.,0.707107,0.}

Im Bogenmaß-Modus:

$\cos\left(\frac{\pi}{4}\right)$	0.707107
cos(45°)	0.707107

Im Bogenmaß-Modus:

$$\cos\begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.212493 & 0.205064 & 0.121389 \\ 0.160871 & 0.259042 & 0.037126 \\ 0.248079 & -0.090153 & 0.218972 \end{bmatrix}$$

cos() (Kosinus)

Dann ist $A = X B X^{-1}$ und $f(A) = X f(B) X^{-1}$. Beispiel: $cos(A) = X cos(B) X^{-1}$, wobei:

cos(B) =

$$\begin{bmatrix} \cos(\lambda_1) & 0 & \dots & 0 \\ 0 & \cos(\lambda_2) & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \cos(\lambda_n) \end{bmatrix}$$

Alle Berechnungen werden unter Verwendung von Fließkomma-Operationen ausgeführt.

cos⁻¹() (Arkuskosinus)

trig Taste

 $cos^{-1}(Wert1) \Rightarrow Wert$

 $\cos^{-1}(Liste1) \Rightarrow Liste$

Im Grad-Modus:

 $\cos^{-1}(1)$ 0.

cos⁻¹(Wert1) gibt den Winkel zurück, dessen Kosinus Wert1 ist.

cos⁻¹(*Liste1*) gibt in Form einer Liste für jedes Element aus *Liste1* den inversen Kosinus zurück.

Hinweis: Das Ergebnis wird gemäß der aktuellen Winkelmoduseinstellung in Grad, in Neugrad oder im Bogenmaß zurückgegeben.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arccos (...) eintippen.

 $\cos^{-1}(Quadratmatrix 1) \Rightarrow Quadratmatrix$

Gibt den inversen Matrix-Kosinus von Quadratmatrix1 zurück. Dies ist nicht gleichbedeutend mit der Berechnung des inversen Kosinus jedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix I muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Im Neugrad-Modus:

Im Bogenmaß-Modus:

Im Winkelmodus Bogenmaß und Komplex-Formatmodus "kartesisch":

$$\cos^{-1}\begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

1.73485+0.064606•*i* -1.49086+2.10514 -0.725533+1.51594•*i* 0.623491+0.77836• -2.08316+2.63205•*i* 1.79018-1.27182•

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

cosh() (Cosinus hyperbolicus)

Katalog > 🕮

 $cosh(Wert1) \Rightarrow Wert$

 $cosh(Liste1) \Rightarrow Liste$

cosh(Wert1) gibt den Cosinus hyperbolicus des Arguments zurück.

cosh(Liste1) gibt in Form einer Liste für jedes Element aus Listel den Cosinus hyperbolicus zurück.

 $cosh(Quadratmatrix1) \Rightarrow Quadratmatrix$

Gibt den Matrix-Cosinus hyperbolicus von *Quadratmatrix1* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des Cosinus hyperbolicus jedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Im Grad-Modus:

1.74671E19

Im Bogenmaß-Modus:

cosh-1() (Arkuskosinus hyperbolicus)

Katalog > 🕮

 $cosh^{-1}(Wert1) \Rightarrow Wert$

 $cosh^{-1}(Liste1) \Rightarrow Liste$

cosh-1(1) cosh-({1,2.1,3}) {0,1.37286,1.76275}

cosh⁻¹(Wert1) gibt den inversen Cosinus hyperbolicus des Arguments zurück.

cosh⁻¹(Liste1) gibt in Form einer Liste für jedes Element aus Liste1 den inversen Cosinus hyperbolicus zurück.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie arccosh (...) eintippen.

Im Winkelmodus Bogenmaß und Komplex-Formatmodus "kartesisch":

cosh-1() (Arkuskosinus hyperbolicus)

Katalog > 🕮

cosh⁻¹

 $(Quadratmatrix 1) \Rightarrow Quadratmatrix$

Gibt den inversen Matrix-Cosinus hyperbolicus von *Quadratmatrix I* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des inversen Cosinus hyperbolicus jedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt **cos()**.

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

$$\cosh^{-1} \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

2.52503+1.73485•*i* -0.009241-1.4908¢ 0.486969-0.725533•*i* 1.66262+0.623491• -0.322354-2.08316•*i* 1.26707+1.79018•

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

cot() (Kotangens)

trig Taste

 $cot(Wert1) \Rightarrow Wert$

 $cot(Liste1) \Rightarrow Liste$

Gibt den Kotangens von *Wert1* oder eine Liste der Kotangens aller Elemente in *Liste1* zurück.

Hinweis: Der als Argument angegebene Winkel wird gemäß der aktuellen Winkelmoduseinstellung als Grad, Neugrad oder Bogenmaß interpretiert. Sie können °, G oder ^r benutzen, um den Winkelmodus vorübergend aufzuheben.

Im Grad-Modus:

cot(45) 1.

Im Neugrad-Modus:

cot(50) 1.

Im Bogenmaß-Modus:

cot({1,2.1,3}) {0.642093,-0.584848,-7.01525}

cot⁻¹() (Arkuskotangens)

 $\cot^{-1}(Wert1) \Rightarrow Wert$

 $cot^{-1}(Listel) \Rightarrow Liste$

Gibt entweder den Winkel, dessen Kotangens *Wert1* ist, oder eine Liste der inversen Kotangens aller Elemente in *Liste1* zurück.

Hinweis: Das Ergebnis wird gemäß der aktuellen Winkelmoduseinstellung in Grad, in Neugrad oder im Bogenmaß zurückgegeben.

Im Grad-Modus:

cot⁻¹(1) 45.

Im Neugrad-Modus:

cot⁻¹(1) 50.

Im Bogenmaß-Modus:

cot-1() (Arkuskotangens)

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie arccot (...) eintippen.

cot-1(1)	0.785398
cot (1)	0.785398

coth() (Kotangens hyperbolicus)

Katalog > 🗐

 $coth(Wert1) \Rightarrow Wert$

coth(1.2) 1.19954 coth({1,3.2}) {1.31304,1.00333}

 $coth(Liste1) \Rightarrow Liste$

Gibt den hyperbolischen Kotangens von Ausdr1 oder eine Liste der hyperbolischen Kotangens aller Elemente in Listel zurück.

coth-1() (Arkuskotangens hyperbolicus)

Katalog > 🕮

 $coth^{-1}(Wert1) \Rightarrow Wert$

 $coth^{-1}(Liste1) \Rightarrow Liste$

coth-1(3.5) 0.293893 coth-1({-2,2.1,6}) {-0.549306,0.518046,0.168236}

count(2,4,6)

count({2,4,6})

count[2, {4,6}, 8

Gibt den inversen hyperbolischen Kotangens von Wert1 oder eine Liste der inversen hyperbolischen Kotangens aller Elemente in Liste1 zurück.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arccoth (...) eintippen.

count() (zähle)

Katalog > 🗐

3

count(Wert1oderListe1 [,Wert2oderListe2 [,...]]) $\Rightarrow Wert$

Gibt die kumulierte Anzahl aller Elemente in den Argumenten zurück, deren Auswertungsergebnisse numerische Werte sind.

Jedes Argument kann ein Ausdruck, ein

Wert, eine Liste oder eine Matrix sein
Sie können Datenarten mischen und
Argumente unterschiedlicher
Dimensionen verwenden.

count() (zähle)

Katalog > 😰

Für eine Liste, eine Matrix oder einen Zellenbereich wird jedes Element daraufhin ausgewertet, ob es in die Zählung eingeschlossen werden soll.

Innerhalb der Lists & Spreadsheet Applikation können Sie anstelle eines beliebigen Arguments auch einen Zellenbereich verwenden.

Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

countIf()

Katalog > 🗐

 $countIf(Liste,Kriterien) \Rightarrow Wert$

Gibt die kumulierte Anzahl aller Elemente in der *Liste* zurück, die die festgelegten *Kriterien* erfüllen.

Kriterien können sein:

- Ein Wert, ein Ausdruck oder eine Zeichenfolge. So zählt zum Beispiel 3 nur Elemente in der Liste, die vereinfacht den Wert 3 ergeben.
- Ein Boolescher Ausdruck, der das Sonderzeichen? als Platzhalter für jedes Element verwendet.
 Beispielsweise zählt?<5 nur die Elemente in der Liste, die kleiner als 5 sind.

Innerhalb der Lists & Spreadsheet Applikation können Sie anstelle der *Liste* auch einen Zellenbereich verwenden.

Leere (ungültige) Elemente in der Liste werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Hinweis: Siehe auch **sumIf()**, Seite 171, und **frequency()**, Seite 62.

countIf($\{1,3,\text{"abc",undef},3,1\},3$) 2

Zählt die Anzahl der Elemente, die 3 entsprechen.

Zählt die Anzahl der Elemente, die "def." entsprechen

Zählt 1 und 3.

Zählt 3, 5 und 7.

Zählt 1, 3, 7 und 9.

 $cPolyRoots(Poly,Var) \Rightarrow Liste$

 $cPolyRoots(KoeffListe) \Rightarrow Liste$

cPolyRoots({1,2,1})

Die erste Syntax cPolyRoots(Poly,Var) gibt eine Liste mit komplexen Wurzeln des Polynoms *Poly* bezüglich der Variablen *Var* zurück.

Polv muss dabei ein Polvnom in entwickelter Form in einer Variablen sein. Verwenden Sie keine nichtentwickelten Formen wie z. B. $v^2 \cdot v + 1$ oder $x \cdot x + 2 \cdot x + 1$

Die zweite Syntax cPolyRoots(KoeffListe) liefert eine Liste mit komplexen Wurzeln für die Koeffizienten in KoeffListe.

Hinweis: Siehe auch polyRoots(), Seite 127.

{-1,-1}

crossP() (Kreuzprodukt)

Katalog > 🗐

 $crossP(Liste1, Liste2) \Rightarrow Liste$

Gibt das Kreuzprodukt von Listel und Liste2 als Liste zurück.

Liste1 und Liste2 müssen die gleiche Dimension besitzen, die entweder 2 oder 3 sein muss.

 $crossP(Vektor1, Vektor2) \Rightarrow Vektor$

Gibt einen Zeilen- oder Spaltenvektor zurück (je nach den Argumenten), der das Kreuzprodukt von Vektor 1 und Vektor2 ist.

Entweder müssen Vektor 1 und Vektor 2 beide Zeilenvektoren oder beide Spaltenvektoren sein. Beide Vektoren müssen die gleiche Dimension besitzen. die entweder 2 oder 3 sein muss.

crossP({0.1,2.2,-5},{1,-0.5,0})
{-2.5,-5.,-2.25}

csc() (Kosekans)

trig Taste

 $csc(Wert1) \Rightarrow Wert$

Im Grad-Modus:

csc() (Kosekans)Image: Cosection of the cosectio

csc ⁻¹ () (Inverser Kosekans)		trig Taste
$csc^{-1}(Wert1) \Rightarrow Wert$	Im Grad-Modus:	
$csc^{-1}(Liste1) \Rightarrow Liste$	csc ⁻¹ (1)	90.
Gibt entweder den Winkel, dessen Kosekans $Wert1$ entspricht, oder eine Liste der inversen Kosekans aller Elemente in $Liste1$ zurück.	Im Neugrad-Modus:	100.
Hinweis: Das Ergebnis wird gemäß der aktuellen Winkelmoduseinstellung in Grad, in Neugrad oder im Bogenmaß zurückgegeben.	Im Bogenmaß-Modus:	
Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arccsc () eintippen.	csc ⁻¹ ({1,4,6}) {1.5708,0.25268	,0.167448}

csch() (Kosekans hyperbolicus)	Katalog > 🗐
$csch(Wert1) \Rightarrow Wert$	csch(3) 0.099822
$\operatorname{csch}(Liste1) \Rightarrow Liste$	csch({1,2.1,4}) {0.850918,0.248641,0.036644}
Gibt den hyperbolischen Kosekans von Wert1 oder eine Liste der hyperbolischen Kosekans aller Elemente in Liste1 zurück.	(0.030910,0.240041,0.030041)

csch-1() (Inverser Kosekans hyperbolicus)

Katalog > 🕮

 $csch^{-1}(Wert1) \Rightarrow Wert$

 $\operatorname{csch}^{-1}(Liste1) \Rightarrow Liste$

Gibt den inversen hyperbolischen Kosekans von Wert1 oder eine Liste der inversen hyperbolischen Kosekans aller Elemente in Liste1 zurück.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arccsch (...) eintippen.

csch-1(1)	0.881374
csch ⁻¹ ({1,2.1,3})	
{0.881374,0.459815,0.32745}	

CubicReg (Kubische Regression)

Katalog > 🗐

CubicReg X, Y[, [Häuf] [, Kategorie, Mit]]

Berechnet die kubische polynomiale Regressiony = $a \cdot x^3 + b \cdot x^2 + c \cdot x + dauf Listen X$ und Y mit der Häufigkeit Häuf. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat. results gespeichert. (Seite 166.)

Alle Listen außer Mit müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

Häuf ist eine optionale Liste von Häufigkeitswerten. Jedes Element in Häuf gibt die Häufigkeit für jeden entsprechenden Datenpunkt X und Y an. Der Standardwert ist 1. Alle Flemente müssen Ganzzahlen > 0. sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente. deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a · x³+b · x²+c · x+d
stat.a, stat.b, stat.c, stat.d	Regressionskoeffizienten
stat.R ²	Bestimmungskoeffizient
stat.Resid	Residuen von der Regression
stat.XReg	Liste der Datenpunkte in der modifizierten X $List$, die schließlich in der Regression mit den Beschränkungen für $H\ddot{a}ufigkeit$, $Kategorieliste$ und Mit $Kategorien$ verwendet wurde
stat.YReg	Liste der Datenpunkte in der modifizierten Y $List$, die schließlich in der Regression mit den Beschränkungen für $H\ddot{a}ufigkeit$, $Kategorieliste$ und Mit $Kategorien$ verwendet wurde
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

cumulativeSum() (kumulierteSumme)

 $cumulativeSum(Liste1) \Rightarrow Liste$

cumulativeSum($\{1,2,3,4\}$) $\{1,3,6,10\}$

Gibt eine Liste der kumulierten Summen der Elemente aus *Liste I* zurück, wobei bei Element 1 begonnen wird.

cumulativeSum(Matrix1) $\Rightarrow Matrix$

Gibt eine Matrix der kumulierten Summen der Elemente aus *Matrix I* zurück. Jedes Element ist die kumulierte Summe der Spalte von oben nach unten.

Ein leeres (ungültiges) Element in Liste1 oder Matrix1 erzeugt ein ungültiges Element in der resultierenden Liste oder Matrix. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \rightarrow mI$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
cumulativeSum $(m1)$	$\begin{bmatrix} 1 & 2 \\ 4 & 6 \\ 9 & 12 \end{bmatrix}$

Cycle (Zyklus)

Katalog > 📳

Cycle (Zyklus)

Übergibt die Programmsteuerung sofort an die nächste Wiederholung der aktuellen Schleife (For, While oder Loop).

Funktionslisting, das die ganzen Zahlen von 1 bis 100 summiert und dabei 50 überspringt.

Cycle (Zyklus)

Katalog > 🕮

Cycle ist außerhalb dieser drei Schleifenstrukturen (For, While oder Loop) nicht zulässig.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define g	()=Func	Done
	Local temp,i	
	$0 \rightarrow temp$	
	For $i,1,100,1$	
	If <i>i</i> =50	
	Cycle	
	$temp+i \rightarrow temp$	
	EndFor	
	Return temp	
	EndFunc	
g()		5000

▶Cylind (Zylindervektor)

Katalog > 🔯

Vektor ▶Cylind

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>Cylind eintippen.

Zeigt den Zeilen- oder Spaltenvektor in Zylinderkoordinaten $[r, \angle \theta, z]$ an.

Vektor muss genau drei Elemente besitzen. Er kann entweder ein Zeilenoder Spaltenvektor sein.

[2 2 3]▶Cylind $[2.82843 \ \angle 0.785398 \ 3.]$

D

dbd()		Katalog > 🕡
$dbd(Datum1, Datum2) \Rightarrow Wert$	dbd(12.3103,1.0104)	1
Zählt die tatsächlichen Tage und gibt die Anzahl der Tage zwischen $Datum 1$ und $Datum 2$ zurück.	dbd(1.0107,6.0107)	151
	dbd(3112.03,101.04)	1
	dbd(101.07,106.07)	151
Datum1 und Datum2 können Zahlen oder Zahlenlisten innerhalb des Datumsbereichs des Standardkalenders sein. Wenn sowohl Datum1 als auch Datum2 Listen sind, müssen sie dieselbe Länge haben.		
Datum1 und Datum2 müssen innerhalb der Jahre 1950 und 2049 liegen.		

dbd() Katalog > [[3]

Sie können Datumseingaben in zwei Formaten vornehmen. Die Datumsformate unterscheiden sich in der Anordnung der Dezimalstellen.

MM.TTJJ (üblicherweise in den USA verwendetes Format)

TTMM.JJ (üblicherweise in Europa verwendetes Format)

▶DD (Dezimalwinkel)		Katalog > 🎚
$Zahl \triangleright DD \Rightarrow Wert$	Im Grad-Modus:	
$Listel \triangleright DD \Rightarrow Liste$	(1.5°)▶DD	1.5°
Matrix1 ▶DD⇒Matrix	(45°22'14.3")▶DD ({45°22'14.3",60°0'0"})▶DD	45.3706°
Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>DD eintippen.	{4	.5.3706°,60°}
Gibt das Dezimaläquivalent des Arguments zurück. Das Argument ist eine Zahl, eine Liste oder eine Matrix, die gemäß der Moduseinstellung als Neugrad, Bogenmaß oder Grad interpretiert wird.	Im Neugrad-Modus:	
	1▶DD	9 10
	Im Bogenmaß-Modus:	
	(1.5)▶DD	85.9437°

▶Decimal (Dezimal)		Katalog > 🗐
Wert1 ▶Decimal⇒Wert	1 Decimal	0.333333
$Liste1$ Decimal \Rightarrow $Wert$	3	
Matrix 1 ightharpoonup Decimal ightharpoonup Wert		
Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>Decimal eintippen.		
Zeigt das Argument in Dezimalform an. Dieser Operator kann nur am Ende der Eingabezeile verwendet werden.		

Define Var = Expression

Define Function(Param1, Param2, ...) = Expression

Definiert die Variable *Var* oder die benutzerdefinierte Funktion *Function*.

Parameter wie z.B. Param1 enthalten Platzhalter zur Übergabe von Argumenten an die Funktion. Beim Aufrufen benutzerdefinierter Funktionen müssen Sie Argumente angeben (z.B. Werte oder Variablen), die zu den Parametern passen. Beim Aufruf wertet die Funktion Ausdruck (Expression) unter Verwendung der übergebenen Parameter aus.

Var und Funktion (Function) dürfen nicht der Name einer Systemvariablen oder einer integrierten Funktion / eines integrierten Befehls sein.

Hinweis: Diese Form von Definiere (Define) ist gleichwertig mit der Ausführung folgenden Ausdrucks: expression → Function (Param1.Param2).

Define Function(Param1, Param2, ...) = Func
Block
EndFunc

Define Program(Param1, Param2, ...) = Prgm

Block EndPrgm

In dieser Form kann die benutzerdefinierte Funktion bzw. das benutzerdefinierte Programm einen Block mit mehreren Anweisungen ausführen.

Define $g(x,y)=2\cdot x-3\cdot y$	Done
g(1,2)	-4
$1 \to a: 2 \to b: g(a,b)$	-4
Define $h(x)$ =when($x < 2, 2 \cdot x - 3, -2 \cdot x + 3$)	Done
h(-3)	-9
h(4)	-5

Define
$$g(x,y)$$
=Func Done

If $x > y$ Then

Return x
Else

Return y
EndIf

EndFunc

 $g(3,7)$ 3

Definie

Katalog > 🗐

Block kann eine einzelne Anweisung oder eine Serie von Anweisungen in separaten Zeilen sein. Block kann auch Ausdrücke und Anweisungen enthalten (wie If, Then, Else und For).

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Hinweis: Siehe auch Definiere LibPriv (Define LibPriv), Seite 41, und Definiere LibPub (Define LibPub), Seite 41.

Define g(x,y)=Prgm

If x>y Then

Disp x," greater than ",y

Els

Disp x," not greater than ",y

EndIf EndPrgm

Done

g(3,-7)

3 greater than -7

Done

Definiere LibPriv (Define LibPriv)

Katalog > 📳

Define LibPriv Var = Expression

Define LibPriv Function(Param1, Param2, ...) = Expression

Define LibPriv Function(Param1, Param2,

...) = Func

Block

EndFunc

Define LibPriv Program(Param1, Param2,

...) = Prgm Block

EndPrgm

Funktioniert wie **Define**, definiert jedoch eine Variable, eine Funktion oder ein Programm für eine private Bibliothek. Private Funktionen und Programme werden im Katalog nicht angezeigt.

Hinweis: Siehe auch Definiere (Define), Seite 40, und Definiere LibPub (Define LibPub), Seite 41.

Definiere LibPub (Define LibPub)

Katalog > 🗐

Define LibPub Var = Expression

Define LibPub Function(Param1, Param2,

...) = Expression

Define LibPub Function(Param1, Param2, ...) = Func

Block

EndFunc

Define LibPub Program(Param1, Param2, ...) = Prgm

Block

EndPrgm

Funktioniert wie Definiere (Define), definiert jedoch eine Variable, eine Funktion oder ein Programm für eine öffentliche Bibliothek. Öffentliche Funktionen und Programme werden im Katalog angezeigt, nachdem die Bibliothek gespeichert und aktualisiert wurde.

Hinweis: Siehe auch Definiere (Define), Seite 40, und Definiere LibPriv (Define LibPriv), Seite 41.

deltaList()

Siehe Δ List(), Seite 92.

DelVar		Katalog > 👰
DelVar Var1[, Var2] [, Var3]	$2 \rightarrow a$	2
DelVar Var.	$(a+2)^2$	16
Löscht die angegebene Variable oder Variablengruppe im Speicher.	DelVar a	Done
	$(a+2)^2$	"Error: Variable is not defined"
Wenn eine oder mehrere Variablen gesperrt sind, wird bei diesem Befehl eine Fehlermeldung angezeigt und es werden nur die nicht gesperrten Variablen gelöscht. Siehe unLock, Seite 186.		

DelVar Katalog > 🕮 DelVar Var. löscht alle Mitglieder der 45 aa.a = 45Variablengruppe Var. (wie die aa.b = 5.675.67 Statistikergebnisse stat.nn oder Variablen, die mit der Funktion 78.9 aa.c:=78.9LibShortcut() erstellt wurden). Der Punkt "[]" getVarInfo() aa.a "NUM" (.) in dieser Form des Befehls DelVar "[]" aa.b "NUM" begrenzt ihn auf das Löschen einer "NUM" aa.c Variablengruppe; die einfache Variable DelVar aa. Done Var ist nicht davon betroffen.

delVoid()		Katalog > 🗊
$delVoid(Liste1) \Rightarrow Liste$	$\overline{\text{delVoid}(\{1,\text{void},3\})}$	{1,3}

getVarInfo()

Gibt eine Liste mit dem Inhalt von *Liste1* aus, wobei alle leeren (ungültigen) Elemente entfernt sind.

Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

det() (Matrixdeterminante)		Katalog > 📳
$\begin{aligned} & \textbf{det}(Quadratmatrix[,\\ & Toleranz]) \Rightarrow & Ausdruck \end{aligned}$	$ \frac{1}{\det\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}} $	-2
Gibt die Determinante von <i>Quadratmatrix</i> zurück.	$ \begin{bmatrix} 1.\text{E}20 & 1 \\ 0 & 1 \end{bmatrix} \rightarrow mat1 $	$\begin{bmatrix} 1. \mathbf{E} 20 & 1 \\ 0 & 1 \end{bmatrix}$
Jedes Matrixelement wird wahlweise als	det(mat1)	0
0 behandelt, wenn sein Absolutwert	det(mat1,.1)	1. E 20
kleiner als <i>Toleranz</i> ist. Diese Toleranz wird nur dann verwendet, wenn die		

 Wenn Sie <u>lettlenter</u> verwenden oder den Modus Autom. oder N\u00e4herung auf 'Approximiert' einstellen, werden Berechnungen in Flie\u00dfkomma-Arithmetik durchgef\u00fchrt.

Matrix Fließkommaelemente aufweist und keinerlei symbolische Variablen ohne zugewiesene Werte enthält. Anderenfalls wird *Toleranz* ignoriert.

• Wird *Toleranz* weggelassen oder nicht

"NONE"

det() (Matrixdeterminante)

Katalog > 🗐

1 2 3

5 7 9

 $[4 \ 2 \ 9]$

verwendet, so wird die Standardtoleranz folgendermaßen berechnet:

5E-14 ·max(dim(Quadratmatrix)) · rowNorm(Quadratmatrix)

diag() (Matrixdiagonale)		Katalog > 🏥
diag(<i>Liste</i>)⇒ <i>Matrix</i>	diag([2 4 6])	2 0 0
diag(Zeilenmatrix)⇒Matrix		$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}$
diag(Spaltenmatrix)⇒Matrix		
Gibt eine Matrix mit den Werten der Argumentliste oder der Matrix in der Hauptdiagonalen zurück.		

1 2 3

5 7 9

diag(Ans)

 $diag(Quadratmatrix) \Rightarrow Zeilenmatrix$

Gibt eine Zeilenmatrix zurück, die die Elemente der Hauptdiagonalen von Quadratmatrix enthält.

Quadratmatrix muss eine quadratische Matrix sein.

dim() (Dimension)		Katalog > 🗐
dim(Liste)⇒Ganzzahl	$\overline{\dim(\{0,1,2\})}$	3
Gibt die Dimension von $\it Liste$ zurück.		
dim(Matrix)⇒Liste		{3,2}
Gibt die Dimensionen von Matrix als Liste mit zwei Elementen zurück {Zeilen, Spalten}.	$ \frac{\dim \begin{bmatrix} 2 & 1 \\ 2 & -2 \\ 3 & 5 \end{bmatrix}}{} $	
$dim(String) \Rightarrow Ganzzahl$	dim("Hello")	5
Gibt die Anzahl der in der Zeichenkette	dim("Hello "&"there")	11

String enthaltenen Zeichen zurück.

Disp (Zeige)

Katalog > 📳

Katalog > 🗐

Disp AusdruckOderString1 [, AusdruckOderString2] ...

Zeigt die Argumente im *Calculator* Protokoll an. Die Argumente werden hintereinander angezeigt, dabei werden Leerzeichen zur Trennung verwendet.

Dies ist vor allem bei Programmen und Funktionen nützlich, um die Anzeige von Zwischenberechnungen zu gewährleisten.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define chars(start,end)	=Prgm
, , ,	For i,start,end
	Disp i ," ",char (i)
	EndFor
	EndPrgm
	Done
chars(240,243)	
	240 ð
	241 ñ
	242 ò
	243 ó
	Done

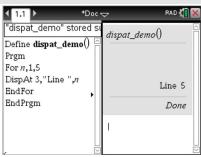
DispAt

DispAt int, Term1 [, Term2 ...] ...

Mit **DispAt** können Sie die Zeile festlegen, in der der angegebene Term oder die angegebene Zeichenkette auf dem Bildschirm angezeigt wird.

Die Zeilennummer kann als Term angegeben werden.

Beachten Sie, dass die Zeilennummer nicht für den gesamten Bildschirm gedacht ist, sondern für den Bereich unmittelbar nach dem Befehl/Programm.


Dieser Befehl ermöglicht die dashboard-ähnliche Ausgabe von Programmen, bei denen der Wert eines Terms oder von einer Sensormessung in der gleichen Zeile aktualisiert wird

DispAtund Disp können im gleichen Programm verwendet werden.

DispAt Beispiel RAD 🕻 1.1 *Doc ⊂ dispat_demo dispat_demo() Define dispat_demo() Line 1 Prgm For n, 1,5 Line 2 DispAt n, "Line ",n Line 3 EndFor Line 4 EndPrgm Line 5 Done

Katalog > 🗐 **DispAt**

Hinweis: Die maximale Anzahl ist auf 8 eingestellt, da diese Zahl einem Bildschirm voller Zeilen auf dem Handheld-Bildschirm entspricht soweit die Zeilen über keine mathematischen 2D-Ausdrücke verfügen. Die genaue Anzahl der Zeilen hängt vom Inhalt der angezeigten Informationen ab.

Erläuternde Beispiele:

Define z()=	Beenden von	
Prgm	z()	
For n,1,3	Iteration 1:	
DispAt 1,,,N: ",n	Zeile 1: N:1	
Disp "Hallo"	Zeile 2: Hallo	
EndFor		
EndPrgm	Iteration 2:	
	Zeile 1: N:2	
	Zeile 2: Hallo	
	Zeile 3: Hallo	
	Iteration 3:	
	Zeile 1: N:3	
	Zeile 2: Hallo	
	Zeile 3: Hallo	
	Zeile 4: Hallo	
Define z1()=	z1()	
Prgm	Zeile 1: N:3	
For n,1,3	Zeile 2: Hallo	
DispAt 1,,,N: ",n	Zeile 3: Hallo	
EndFor	Zeile 4: Hallo	
	Zeile 5: Hallo	
For n,1,4		
Disp "Hallo"		
EndFor		
EndPrgm		

Fehlermeldungen:

Fehlermeldung DispAt Zeilennummer muss zwischen 1 und 8 liegen	Beschreibung Term bewertet die Zeilennummer außerhalb des Bereichs 1-8 (inklusive)
Zu wenig Argumente	Der Funktion oder dem Befehl fehlen ein oder mehr Argumente.
Keine Argumente	Entspricht dem aktuellen Dialog 'Syntaxfehler'
Zu viele Argumente	Argument eingrenzen. Gleicher Fehler wie Disp.
Ungültiger Datentyp	Erstes Argument muss eine Zahl sein.
Ungültig: DispAt ungültig	"Hallo Welt" Datentypfehler für die Lücke wird verworfen (falls die Rückmeldung definiert ist)

Katalog > 🗐

Zahl **▶DMS**

Im Grad-Modus:

Liste DMS

(45.371)▶DMS 45°22'15.6" ({45.371,60})▶DMS {45°22'15.6",60°}

Matrix ▶DMS

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>DMS eintippen.

Interpretiert den Parameter als Winkel und zeigt die entsprechenden GMS-Werte (engl. DMS) an (GGGGGG°MM'SS.ss"). Siehe °, ', " (Seite 218) zur Erläuterung des DMS-Formats (Grad, Minuten, Sekunden).

Hinweis: ▶DMS wandelt Bogenmaß in Grad um, wenn es im Bogenmaß-Modus benutzt wird. Folgt auf die Eingabe das Grad-Symbol °, wird keine Umwandlung vorgenommen. Sie können ▶DMS nur am Ende einer Eingabezeile benutzen.

dotP() (Skalarprodukt)

Katalog > 🗐

 $dotP(Liste1, Liste2) \Rightarrow Ausdruck$

Gibt das Skalarprodukt zweier Listen zurück.

 $dotP(Vektor1, Vektor2) \Rightarrow Ausdruck$

Gibt das Skalarprodukt zweier Vektoren zurück.

Es müssen beide Zeilenvektoren oder beide Spaltenvektoren sein.

$dotP(\{1,2\},\{5,6\})$	17

$$\frac{1}{\det P([1 \ 2 \ 3], [4 \ 5 \ 6])} \qquad 32$$

Ε

e^()		e ^x Taste
e^(Wert1)⇒Wert	e ¹	2.71828
Gibt e hoch <i>Wert1</i> zurück.	e ^{3²}	8103.08

Hinweis: Siehe auch Vorlage **e Exponent**, Seite 2.

Hinweis: Das Drücken von ex zum Anzeigen von e^(ist nicht das gleiche wie das Drücken von **E** auf der Tastatur.

Sie können eine komplexe Zahl in der polaren Form rei θ eingeben. Verwenden Sie diese aber nur im Winkelmodus Bogenmaß, da die Form im Grad- oder Neugrad-Modus einen Bereichsfehler verursacht.

e^(*Liste1***)**⇒*Liste*

Gibt **e** hoch jedes Element der *Liste1* zurück.

 $e^{(Quadratmatrix 1)} \Rightarrow Quadratmatrix$

Ergibt den Matrix-Exponenten von *Quadratmatrix1*. Dies ist nicht gleichbedeutend mit der Berechnung von e hoch jedes Element. Näheres zur Berechnungsmethode finden Sie im Abschnitt **cos()**.

{2.71828,2.71828,1.64872}

 $e^{\{\overline{1,1.,0.5}\}}$

_						
	1	5	3	782.209	559.617	456.509
	4	2	1	680.546	488.795	396.521
е	6	-2	1	524.929	371.222	307.879

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

eff() Katalog > 🗓 🤅

eff(5.75,12)

eff(Nominalzinssatz, CpY) $\Rightarrow Wert$

Finanzfunktion, die den Nominalzinssatz Nominalzinssatz in einen jährlichen Effektivsatz konvertiert, wobei CpY als die Anzahl der Verzinsungsperioden pro Jahr gegeben ist.

Nominalzinssatz muss eine reelle Zahl sein und CpY muss eine reelle Zahl > 0 sein.

Hinweis: Siehe auch nom(), Seite 115.

5.90398

Katalog > 🗐

eigVc() (Eigenvektor)

 $eigVc(Quadratmatrix) \Rightarrow Matrix$

Ergibt eine Matrix, welche die Eigenvektoren für eine reelle oder komplexe Quadratmatrix enthält, wobei jede Spalte des Ergebnisses zu einem Eigenwert gehört. Beachten Sie, dass ein Eigenvektor nicht eindeutig ist; er kann durch einen konstanten Faktor skaliert werden. Die Eigenvektoren sind normiert, d. h. wenn $V = [x_1, x_2, ..., x_n]$, dann:

$$x_1^2 + x_2^2 + \dots + x_n^2 = 1$$

Quadratmatrix wird zunächst mit Ähnlichkeitstransformationen bearbeitet, bis die Zeilen- und Spaltennormen so nahe wie möglich bei demselben Wert liegen. Die Quadratmatrix wird dann auf die obere Hessenberg-Form reduziert, und die Eigenvektoren werden mit einer Schur-Faktorisierung berechnet.

Im Komplex-Formatmodus "kartesisch":

-1	2	5		-1	2	5
3	-6	9	→ m1	3	-6	9
2	-5	7		2	-5	7]

 $\begin{array}{l} \operatorname{eigVc}(m1) \\ \begin{bmatrix} -0.800906 & 0.767947 & 0.484029 & 0.573804 + 0.052258 \cdot i & 0.57389 \\ 0.352512 & 0.262687 + 0.096286 \cdot i & 0.2626 \\ \end{bmatrix}$

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

eigVI() (Eigenwert)

Katalog > 🕮

 $eigVI(Quadratmatrix) \Rightarrow Liste$

Ergibt eine Liste von Eigenwerten einer reellen oder komplexen *Quadratmatrix*.

Ouadratmatrix wird zunächst mit Ähnlichkeitstransformationen bearbeitet, bis die Zeilen- und Spaltennormen so nahe wie möglich bei demselben Wert liegen. Die Quadratmatrix wird dann auf die obere Hessenberg-Form reduziert, und die Eigenwerte werden aus der oberen Hessenberg-Matrix berechnet.

Im Komplex-Formatmodus "kartesisch":

Γ.		-1	Га	2	_1
-1	2	2	-1	2	5
3	-6	$9 \rightarrow m1$	3	-6	9
2	-5	7	2	-5	7

eigVl(m1)

{-4.40941,2.20471+0.763006·*i*,2.20471-0.•

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Else

Siehe If, Seite 76.

Elself

Katalog > 🕮

If Boolescher Ausdr 1 Then

Rlock 1 Elself Boolescher Ausdr2 Then Block2

Elself Boolescher AusdrN Then BlockN

EndIf

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define g(x)=Func

If $x \le -5$ Then Return 5

ElseIf x > -5 and x < 0 Then

Return ¬x

ElseIf $x \ge 0$ and $x \ne 10$ Then

Return x

ElseIf x=10 Then

Return 3

EndIf

EndFunc

Done

EndFor

Siehe For, Seite 59.

EndFunc

Siehe Func, Seite 64.

EndLoop

Siehe Loop, Seite 100.

EndWhile

Siehe While, Seite 190.

EndPrgm

Siehe Prgm, Seite 128.

EndTry

Siehe Try, Seite 179.

euler ()

Katalog > 🗐 euler(Ausdr, Var, abhVar, {Var0, Differentialgleichung:

VarMax}, abhVar0, VarSchritt [, eulerSchritt]) $\Rightarrow Matrix$

euler(AusdrSystem, Var, ListeAbhVar, {Var0, VarMax}, ListeAbhVar0, $VarSchritt [, eulerSchritt]) \Rightarrow Matrix$

euler(AusdrListe, Var, ListeAbhVar, {Var0, VarMax}, ListeAbhVar0, $VarSchritt[, eulerSchritt]) \Rightarrow Matrix$

Verwendet die Euler-Methode zum Lösen des Systems

$$\frac{d \ depVar}{d \ Var} = Expr(Var, depVar)$$

mit abhVar(Var0)=abhVar0 auf dem Intervall [Var0, VarMax]. Gibt eine Matrix zurück, deren erste Zeile die Ausgabewerte von *Var* definiert und deren zweite Zeile den Wert der ersten Lösungskomponente an den entsprechenden Var-Werten definiert usw.

y'=0.001*y*(100-y) und y(0)=10

euler
$$(0.001 \cdot y \cdot (100 - y), t, y, \{0,100\}, 10, 1)$$

$$\begin{bmatrix} 0. & 1. & 2. & 3. & 4. \\ 10. & 10.9 & 11.8712 & 12.9174 & 14.042 \end{bmatrix}$$

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Gleichungssystem:

$$\begin{cases} y1' = -y1 + 0.1 \cdot y1 \cdot y2 \\ y2' = 3 \cdot y2 - y1 \cdot y2 \end{cases}$$

mit vI(0)=2 und v2(0)=5

Ausdr ist die rechte Seite, die die gewöhnliche Differentialgleichung (ODE) definiert.

Ausdr System ist das System rechter Seiten, welche das ODE-System definieren (entspricht der Ordnung abhängiger Variablen in Liste AbhVar).

AusdrListe ist eine Liste rechter Seiten, welche das ODE-System definieren (entspricht der Ordnung abhängiger Variablen in ListeAbhVar).

Var ist die unabhängige Variable.

ListeAbhVar ist eine Liste abhängiger Variablen.

{Var0, VarMax} ist eine Liste mit zwei Elementen, die die Funktion anweist, von Var0 zu VarMax zu integrieren.

ListeAbhVar0 ist eine Liste von Anfangswerten für abhängige Variablen.

VarSchritt ist eine Zahl ungleich Null, sodass sign(VarSchritt) = sign ($VarMax-Var\theta$) und Lösungen an $Var\theta+i\cdot VarSchritt$ für alle i=0,1,2,... zurückgegeben werden, sodass $Var\theta+i\cdot VarSchritt$ in $[var\theta,VarMax]$ ist (möglicherweise gibt es keinen Lösungswert an VarMax).

eulerSchritt ist eine positive ganze Zahl (standardmäßig 1), welche die Anzahl der Euler-Schritte zwischen Ausgabewerten bestimmt. Die tatsächliche von der Euler-Methode verwendete Schrittgröße ist VarSchritt/eulerSchritt.

euler
$$\begin{cases} -yI + 0.1 \cdot yI \cdot y2 \\ 3 \cdot y2 - yI \cdot y2 \end{cases}$$
, $\{yI, y2\}, \{0,5\}, \{2,5\}, 1 \}$
 $\begin{bmatrix} 0. & 1. & 2. & 3. & 4. & 5. \\ 2. & 1. & 1. & 3. & 27. & 243. \\ 5. & 10. & 30. & 90. & 90. & -2070. \end{bmatrix}$

eval () Hub-Menü

 $eval(Expr) \Rightarrow Zeichenfolge$

Stellen Sie das blaue Element von RGB LED auf halbe Intensität ein.

eval () Hub-Menü

eval() ist nur im TI-Innovator™ Hub Befehlsargument von Programmierbefehlen Get, GetStr und Send gültig. Die Software wertet den Ausdruck *Expr* aus und ersetzt die Anweisung eval() mit dem Ergebnis als Zeichenfolge.

Das Argument *Expr* muss zu einer reellen Zahl vereinfachbar sein.

lum:=127 127 Send "SET COLOR.BLUE eval(lum)" Done

Setzen Sie das blaue Element auf AUS zurück.

Send "SET COLOR.BLUE OFF" Done

Argument eval() muss zu einer reellen Zahl vereinfachbar sein.

Send "SET LED eval("4") TO ON"

"Error: Invalid data type"

Programm zum Einblenden des roten Elements

Define fadein()=
Prgm
For i,0,255,10
Send "SET COLOR.RED eval(i)"
Wait 0.1
EndFor
Send "SET COLOR.RED OFF"
EndPrgm

Führen Sie das Programm aus.

 fadein()
 Done

 n:=0.25
 0.25

 m:=8
 8

 n⋅m
 2

 Send "SET COLOR.BLUE ON TIME eval(n⋅m)"

 lostr.SendAns
 "SET COLOR.BLUE ON TIME 2"

Obwohl eval() sein Ergebnis nicht anzeigt, können Sie die resultierende Hub-Zeichenfolge nach Ausführen des Befehls durch Prüfung einer beliebigen der folgenden speziellen Variablen anzeigen.

iostr.SendAns iostr.GetAns iostr.GetStrAns

Hinweis: Siehe auch Get (Seite 66), GetStr (Seite 73) und Send (Seite 152).

Exit (Abbruch) Katalog > 🗐

Exit (Abbruch)

Funktionslisting:

Exit (Abbruch)

Katalog > 🕮

Beendet den aktuellen For, While, oder Loop Block.

Exit ist außerhalb dieser drei Schleifenstrukturen (For, While oder Loop) nicht zulässig.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define g()	=Func	Done
	Local temp,i	
	$0 \rightarrow temp$	
	For <i>i</i> ,1,100,1	
	$temp+i \rightarrow temp$	
	If temp>20 Then	
	Exit	
	EndIf	
	EndFor	
	EndFunc	
g()		21

exp() (e hoch x)

ex Taste

 $\exp(Wert1) \Rightarrow Wert$

Gibt e hoch Wert1 zurück.

Hinweis: Siehe auch Vorlage e Exponent, Seite 2.

Sie können eine komplexe Zahl in der polaren Form rei θ eingeben. Verwenden Sie diese aber nur im Winkelmodus Bogenmaß, da die Form im Grad- oder Neugrad-Modus einen Bereichsfehler verursacht.

 $\exp(Listel) \Rightarrow Liste$

Gibt **e** hoch jedes Element der *Liste1* zurück.

 $exp(Quadratmatrix1) \Rightarrow Quadratmatrix$

Ergibt den Matrix-Exponenten von *Quadratmatrix1*. Dies ist nicht gleichbedeutend mit der Berechnung von e hoch jedes Element. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

_e 1	2.71828
e ^{3²}	8103.08

 $\{1,\overline{1.,0.5}\}$ {2.71828,2.71828,1.64872}

	1	5	3	782.209	559.617	456.509
	4	2	1	680.546	488.795	396.521
_	6	-2	1	524.929	371.222	307.879

expr() (String in Ausdruck)

Katalog > 🗐

 $expr(String) \Rightarrow Ausdruck$

Gibt die in *String* enthaltene Zeichenkette als Ausdruck zurück und führt diesen sofort aus. "Define cube(x)= x^3 " \rightarrow funcstr

"Define cube(x)=x^3"

Funcstr\
Done

expr(funcstr)	Done
cube(2)	8

ExpReg (Exponentielle Regression)

Katalog > 🔯

ExpReg X, Y [, [Häuf][, Kategorie, Mit]]

Berechnet die exponentielle Regressiony = $a \cdot (b)$ ×auf Listen X und Y mit der Häufigkeit $H\ddot{a}uf$. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer *Mit* müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

 $H\ddot{a}uf$ ist eine optionale Liste von Häufigkeitswerten. Jedes Element in $H\ddot{a}uf$ gibt die Häufigkeit für jeden entsprechenden Datenpunkt X und Y an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente, deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a ·(b) ^x
stat.a, stat.b	Regressionskoeffizienten

Ausgabevariable	Beschreibung	
stat.r ²	Koeffizient der linearen Bestimmtheit für transformierte Daten	
stat.r	Korrelationskoeffizient für transformierte Daten (x, ln(y))	
stat.Resid Mit dem exponentiellen Modell verknüpfte Residuen		
stat.ResidTrans	Residuum für die lineare Anpassung der transformierten Daten.	
stat.XReg	Liste der Datenpunkte in der modifizierten X $List$, die schließlich in der Regression mit den Beschränkungen für $H\ddot{a}ufigkeit$, $Kategorieliste$ und Mit $Kategorien$ verwendet wurde	
stat.YReg	Liste der Datenpunkte in der modifizierten Y List, die schließlich in der Regression mit den Beschränkungen für Häufigkeit, Kategorieliste und Mit Kategorien verwendet wurde	
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg	

F

factor() (Faktorisiere)	Katalog		
factor(RationaleZahl) ergibt die	factor(152417172689)	123457 · 1234577	
rationale Zahl in Primfaktoren zerlegt. Bei zusammengesetzten Zahlen nimmt	isPrime(152417172689)	false	

die Berechnungsdauer exponentiell mit der Anzahl an Stellen im zweitgrößten Faktor zu. Das Faktorisieren einer 30stelligen ganzen Zahl kann beispielsweise länger als einen Tag dauern und das Faktorisieren einer 100-stelligen Zahl mehr als ein Jahrhundert.

So halten Sie eine Berechnung manuell an:

- Handheld: Halten Sie die Taste Gion gedrückt und drücken Sie mehrmals enter .
- Windows®: Halten Sie die Taste F12 gedrückt und drücken Sie mehrmals die Eingabetaste.
- Macintosh®: Halten Sie die Taste F5 gedrückt und drücken Sie mehrmals die Eingabetaste.
- iPad®: Die App zeigt eine Eingabeaufforderung an. Sie können weiter warten oder abbrechen.

factor() (Faktorisiere)

Katalog > 🕮

Möchten Sie hingegen lediglich feststellen, ob es sich bei einer Zahl um eine Primzahl handelt, verwenden Sie isPrime(). Dieser Vorgang ist wesentlich schneller, insbesondere dann, wenn RationaleZahl keine Primzahl ist und der zweitgrößte Faktor mehr als fünf Stellen aufweist.

FCdf() Katalog > 🗐

FCdf

UntGrenze

ObGrenze

FreiGradZähler,FreiGradNenner)⇒Zahl, wenn *UntGrenze* und *ObGrenze* Zahlen sind. Liste, wenn UntGrenze und ObGrenze Listen sind

FCdf

UntGrenze

ObGrenze

FreiGradZähler,FreiGradNenner)⇒Zahl, wenn *UntGrenze* und *ObGrenze* Zahlen sind. Liste, wenn UntGrenze und ObGrenze Listen sind

Berechnet die F

Verteilungswahrscheinlichkeit zwischen UntereGrenze und ObereGrenze für die angegebenen FreiGradZähler (Freiheitsgrade) und *FreiGradNenner*.

Für $P(X \le ObereGrenze)$, UntGrenze = 0setzen.

Fill (Füllen)	Katalog > 📳	
Fill Zahl, MatrixVar⇒Matrix	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow amatrix$	1 2 3 4
Ersetzt jedes Element in der Variablen		
MatrixVar durch Zahl.	Fill 1.01,amatrix	Done
MatrixVar muss bereits vorhanden sein.	amatrix	1.01 1.01

1.01 1.01

Fill (Füllen)

Katalog > 🕮

Fill Zahl, ListeVar⇒Liste

Ersetzt jedes Element in der Variablen ListeVar durch Zahl.

$\{1,2,3,4,5\} \rightarrow ab$	list $\{1,2,3,4,5\}$
Fill 1.01,alist	Done
alist	{1.01,1.01,1.01,1.01,1.01}

ListeVar muss bereits vorhanden sein.

FiveNumSummary

Katalog > 🗐

FiveNumSummary X[,[$H\ddot{a}uf$] [.Kategorie.Mit]]

Bietet eine gekürzte Version der Statistik mit 1 Variablen auf Liste X. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

X stellt eine Liste mit den Daten dar.

Häuf ist eine optionale Liste von Häufigkeitswerten. Jedes Element in Häuf gibt die Häufigkeit für jeden entsprechenden X-Wert an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente. deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Ein leeres (ungültiges) Element in einer der Listen *X*, *Freq* oder *Kategorie* führt zu einem Fehler im entsprechenden Element aller dieser Listen. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Ausgabevariable	Beschreibung
stat.MinX	Minimum der x-Werte
stat.Q ₁ X	1. Quartil von x
stat.MedianX	Median von x
stat.Q ₃ X	3. Quartil von x

Ausgabevariable	Beschreibung
stat.MaxX	Maximum der x-Werte

floor() (Untergrenze)

Katalog > 🗐

$floor(Wert1) \Rightarrow Ganzzahl$

floor(-2.14) -3

Gibt die größte ganze Zahl zurück, die \leq dem Argument ist. Diese Funktion ist identisch mit int().

Das Argument kann eine reelle oder eine komplexe Zahl sein.

 $floor(Liste1) \Rightarrow Liste$

 $floor(Matrix 1) \Rightarrow Matrix$

Für jedes Element einer Liste oder Matrix wird die größte ganze Zahl, die kleiner oder gleich dem Element ist, zurückgegeben.

Hinweis: Siehe auch ceiling() und int().

$floor\left\{\left\{\frac{3}{2},0,-5.3\right\}\right\}$	{1,0,-6.}
floor $\begin{bmatrix} 1.2 & 3.4 \\ 2.5 & 4.8 \end{bmatrix}$	[1. 3.] 2. 4.]

For Var, Von, Bis [, Schritt] Refine g()=Func

For Var, Von, Bis [, Schritt] Block EndFor

Führt die in *Block* befindlichen Anweisungen für jeden Wert von *Var* zwischen *Von* und *Bis* aus, wobei der Wert bei jedem Durchlauf um *Schritt* inkrementiert wird.

Var darf keine Systemvariable sein.

Schritt kann positiv oder negativ sein. Der Standardwert ist 1.

Block kann eine einzelne Anweisung oder eine Serie von Anweisungen sein, die durch ":" getrennt sind.

Define g()	Func	Done
	Local tempsum, step, i	
	$0 \rightarrow tempsum$	
	$1 \rightarrow step$	
	For <i>i</i> ,1,100, <i>step</i>	
	$tempsum+i \rightarrow tempsum$	
	EndFor	
	EndFunc	
g()		5050

Katalog > 🕮

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

format() (Format)

Katalog > 🕮

 $format(Wert[, FormatString]) \Rightarrow String$

Gibt Wert als Zeichenkette im Format der Formatvorlage zurück.

FormatString ist eine Zeichenkette und muss diese Form besitzen: "F[n]", "S[n]", "E[n]", "G[n][c]", wobei [] optionale Teile bedeutet.

F[n]: Festes Format, n ist die Anzahl der angezeigten Nachkommastellen (nach dem Dezimalpunkt).

S[n]: Wissenschaftliches Format. n ist die Anzahl der angezeigten Nachkommastellen (nach dem Dezimalpunkt).

E[n]: Technisches Format, n ist die Anzahl der Stellen, die auf die erste signifikante Ziffer folgen. Der Exponent wird auf ein Vielfaches von 3 gesetzt, und der Dezimalpunkt wird um null, eine oder zwei Stellen nach rechts verschoben.

G[n][c]: Wie Festes Format, unterteilt jedoch auch die Stellen links des Dezimaltrennzeichens in Dreiergruppen. c ist das Gruppentrennzeichen und ist auf "Komma" voreingestellt. Wenn c auf "Punkt" gesetzt wird, wird das Dezimaltrennzeichen zum Komma.

[Rc]: Jeder der vorstehenden Formateinstellungen kann als Suffix das Flag Rc nachgestellt werden, wobei c ein einzelnes Zeichen ist, das den Dezimalpunkt ersetzt.

format(1.234567,"f3")	"1.235"
format(1.234567, "s2")	"1.23E0"
format(1.234567,"e3")	"1.235E0"
format(1.234567,"g3")	"1.235"
format(1234.567, "g3")	"1,234.567"
format(1.234567, "g3,r:")	"1:235"

fPart() (Funktionsteil)

Katalog > 📳

 $fPart(Ausdr1) \Rightarrow Ausdruck$

 $fPart(Liste1) \Rightarrow Liste$

fPart(-1.234) -0.234 fPart({1,-2.3,7.003}) {0,-0.3,0.003}

 $fPart(Matrix 1) \Rightarrow Matrix$

Gibt den Bruchanteil des Arguments zurück.

Bei einer Liste bzw. Matrix werden die Bruchanteile aller Elemente zurückgegeben.

Das Argument kann eine reelle oder eine komplexe Zahl sein.

FPdf() Katalog > 13

FPdf

XWert

,FreiGradZähler,FreiGradNenner)⇒Zahl, wenn XWert eine Zahl ist, Liste, wenn XWert eine Liste ist

FPdf

**** XWert

"FreiGradZähler,FreiGradNenner)⇒Zahl, wenn XWert eine Zahl ist, Liste, wenn XWert eine Liste ist

Berechnet die F

Verteilungswahrscheinlichkeit bei XWert für die angegebenen FreiGradZähler (Freiheitsgrade) und FreiGradNenner.

freqTable list()

Katalog > 📳

freqTable list

(Liste1,HäufGanzzahlListe)⇒Liste

Gibt eine Liste zurück, die die Elemente von Liste I erweitert gemäß den Häufigkeiten in HäufGanzzahlListe enthält. Diese Funktion kann zum Erstellen einer Häufigkeitstabelle für die Applikation 'Data & Statistics' verwendet werden.

$$\begin{array}{c} \text{freqTable} \blacktriangleright \text{list}(\left\{1,2,3,4\right\},\left\{1,4,3,1\right\}) \\ & \left\{1,2,2,2,2,3,3,3,4\right\} \\ \hline \text{freqTable} \blacktriangleright \text{list}(\left\{1,2,3,4\right\},\left\{1,4,0,1\right\}) \\ & \left\{1,2,2,2,2,4\right\} \end{array}$$

Liste1 kann eine beliebige gültige Liste sein.

HäufGanzzahlListe muss die gleiche Dimension wie *Liste1* haben und darf nur nicht-negative Ganzzahlelemente enthalten. Jedes Element gibt an, wie oft das entsprechende *Liste1*-Element in der Ergebnisliste wiederholt wird. Der Wert 0 schließt das entsprechende Liste 1-Flement aus.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie fregTable@>list(...) eintippen

Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

frequency() (Häufigkeit)

Katalog > 🗐

 $frequency(Liste1, binsListe) \Rightarrow Liste$

Gibt eine Liste zurück, die die Zähler der Elemente in *Liste1* enthält. Die Zähler basieren auf Bereichen (bins), die Sie in hinsListe definieren.

Wenn *binsListe* {b(1), b(2), ..., b(n)} ist, sind die festgelegten Bereiche {?≤b(1), b $(1) < ? \le b(2),...,b(n-1) < ? \le b(n), b(n) > ?$ }. Die Ergebnisliste enthält ein Element mehr als die binsListe.

Jedes Element des Ergebnisses entspricht der Anzahl der Elemente aus Liste1, die im Bereich dieser bins liegen. Ausgedrückt in Form der countif() Funktion ist das Ergebnis { countIf(Liste, $\leq b(1)$, countif(Liste, b(1)< $\leq b(2)$), ..., countif(Liste, $b(n-1) < ? \le b(n)$), countif (Liste, b(n)>?)}.

 $datalist = \{1, 2, e, 3, \pi, 4, 5, 6, \text{"hello"}, 7\}$ {1,2,2.71828,3,3.14159,4,5,6,"hello",7} frequency (datalist, $\{2.5,4.5\}$)

Erklärung des Ergebnisses:

- 2 Elemente aus Datenliste (Datalist) sind ≤2.5
- **4** Elemente aus *Datenliste* sind >2.5 und \leq 4.5
- 3 Elemente aus Datenliste sind >4.5

Das Element "Hallo" ist eine Zeichenfolge und kann nicht in einem der definierten bins platziert werden.

frequency() (Häufigkeit)

Elemente von Liste1, die nicht "in einem bin platziert" werden können, werden ignoriert. Leere (ungültige) Elemente werden ebenfalls ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Innerhalb der Lists & Spreadsheet Applikation können Sie für beide Argumente Zellenbereiche verwenden.

Hinweis: Siehe auch countIf(), Seite 33.

FTest_2Samp (Zwei-Stichproben F-Test)

Katalog > 🗐

FTest_2Samp Liste1,Liste2[,Häufigkeit1 [,Häufigkeit2[,Hypoth]]]

FTest_2Samp Liste1,Liste2[,Häufigkeit1 [,Häufigkeit2[,Hypoth]]]

(Datenlisteneingabe)

FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

(Zusammenfassende statistische Eingabe)

Führt einen F -Test mit zwei Stichproben durch. Eine Zusammenfassung der Ergebnisse wird in der Variable *stat.results* gespeichert. (Seite 166.)

Für H_a : $\sigma 1 > \sigma 2$ setzen Sie Hypoth > 0

Für H_a : $\sigma 1 \neq \sigma 2$ (Standard) setzen Sie Hypoth = 0

Für H_a : $\sigma 1 < \sigma 2$ setzen Sie *Hypoth*<0

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
Statistik.F	Berechnete Û Statistik für die Datenfolge

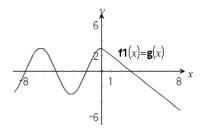
Ausgabevariable	Beschreibung
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
stat.dfNumer	Freiheitsgrade des Zählers = n1-1
stat.dfDenom	Freiheitsgrade des Nenners = n2-1
stat.sx1, stat.sx2	Stichproben-Standardabweichungen der Datenfolgen in $Liste\ 1$ und $Liste\ 2$
stat.x1_bar	Stichprobenmittelwerte der Datenfolgen in Liste 1 und Liste 2
stat.x2_bar	
stat.n1, stat.n2	Stichprobenumfang

Katalog > 🗐 Func

Func **Block** EndFunc

Vorlage zur Erstellung einer benutzerdefinierten Funktion.

Block kann eine einzelne Anweisung, eine Reihe von durch das Zeichen ":" voneinander getrennten Anweisungen oder eine Reihe von Anweisungen in separaten Zeilen sein. Die Funktion kann die Anweisung Zurückgeben (Return) verwenden, um ein bestimmtes Ergebnis zurückzugeben.


Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Definieren Sie eine stückweise definierte Funktion:

Define $g(x)$ =Func	Done
If $x < 0$ Then	
Return $3 \cdot \cos(x)$	
Else	
Return 3–x	
EndIf	
EndFunc	

Ergebnis der graphischen Darstellung g(x)

G

gcd() (Größter gemeinsamer Teiler)		Katalog > 🗐
$gcd(Zahl1, Zahl2) \Rightarrow Ausdruck$	gcd(18,33)	3

gcd() (Größter gemeinsamer Teiler)

Katalog > 🗐

Gibt den größten gemeinsamen Teiler der beiden Argumente zurück. Der gcd zweier Brüche ist der gcd ihrer Zähler dividiert durch das kleinste gemeinsame Vielfache (Icm) ihrer Nenner.

In den Modi Auto oder Approximiert ist der gcd von Fließkommabrüchen 1,0.

$$gcd(Liste1, Liste2) \Rightarrow Liste$$

Gibt die größten gemeinsamen Teiler der einander entsprechenden Elemente von Liste 1 und Liste 2 zurück.

$$gcd(Matrix1, Matrix2) \Rightarrow Matrix$$

Gibt die größten gemeinsamen Teiler der einander entsprechenden Elemente von *Matrix1* und *Matrix2* zurück.

gcd/{ 12.14.16	. {9.7.5})	$\{3.7.1\}$	Į

$$\gcd\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}, \begin{bmatrix} 4 & 8 \\ 12 & 16 \end{bmatrix} \qquad \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

geomCdf()

Katalog > 🗊

geomCdf

(p,untereGrenze,obereGrenze)⇒Zahl, wenn untereGrenze und obereGrenze Zahlen sind, Liste, wenn untereGrenze und obereGrenze Listen sind

 $\begin{array}{l} \textbf{geomCdf(p,} obereGrenze) \\ \textbf{für P(1} \leq x \\ \leq obereGrenze) \Rightarrow Zahl, \text{ wenn } obereGrenze \\ \text{eine Zahl ist, } Liste, \text{ wenn } obereGrenze \\ \text{eine Liste ist} \end{array}$

Berechnet die kumulative geometrische Wahrscheinlichkeit von UntereGrenze bis ObereGrenze mit der angegebenen Erfolgswahrscheinlichkeit p.

Für $P(X \le obereGrenze)$ setzen Sie untereGrenze = 1.

geomPdf()

Katalog > 📳

geomPdf(p,XWert) \Rightarrow Zahl, wenn XWert eine Zahl ist, Liste, wenn XWert eine Liste ist

geomPdf() Katalog > 🗓 🤅

Berechnet die Wahrscheinlichkeit an einem XWert, die Anzahl der Einzelversuche, bis der erste Erfolg eingetreten ist, für die diskrete geometrische Verteilung mit der vorgegebenen Erfolgswahrscheinlichkeit p.

Get Hub-Menü

Get[EingabeString,]Var[, statusVar]

Get[EingabeString,] Fkt(arg1, ...argn) [, statusVar]

Programmierbefehl: Ruft einen Wert von einem verbundenen TI-Innovator™ Hub ab und weist den Wert der Variablen *var* zu.

Der Wert muss angefordert werden:

- Im Voraus durch einen Befehl
 Send "READ ..."
 - oder -
- Durch Einbetten einer Anforderung "READ ..." als optionales Argument von promptString. Bei dieser Methode können Sie einen einzelnen Befehl verwenden, um den Wert anzufordern und abzurufen.

Implizite Vereinfachung findet statt. Zum Beispiel wird eine empfangene Zeichenfolge "123" als numerischer Wert interpretiert. Um die Zeichenfolge beizubehalten, verwenden Sie GetStr statt Get.

Wenn Sie das optionale Argument von status Var einbeziehen, wird ihm ein Wert auf Basis des Erfolgs der Operation zugewiesen. Ein Wert von null bedeutet, dass keine Daten empfangen wurden.

Beispiel: Fordern Sie den aktuellen Wert des integrierten Lichtpegelsensors des Hub an. Verwenden Sie **Get**, um den Wert abzurufen, und weisen Sie ihn der Variablen *lightval* zu.

Send "READ BRIGHTNESS"	Done
Get lightval	Done
lightval	0.347922

Betten Sie die Anforderung READ in den Befehl **Get** ein.

Get "READ BRIGHTNESS",lightvai	Done
lightval	0.378441

Get Hub-Menü

In der zweiten Synthax ermöglicht das Argument von Fkt() es einem Programm, die empfangene Zeichenfolge als Funktionsdefinition zu speichern. Diese Syntax verhält sich so, als hätte das Programm den folgenden Befehl ausgeführt:

Definiere *Fkt*(*arg1*, ...*argn*) = *empfanger String*

Anschließend kann das Programm die so definierte Funktion Fkt() nutzen.

Hinweis: Sie können den Befehl **Get** in einem benutzerdefinierten Programm, aber nicht in einer Funktion verwenden.

Hinweis: Siehe auch **GetStr**, Seite 73 und **Send**. Seite 152.

getDenom() (Nenner holen)

$getDenom(Bruch1) \Rightarrow Wert$

Transformiert das Argument in einen Ausdruck mit gekürztem gemeinsamem Nenner und gibt dann den Nenner zurück.

Katalog > 🗐

x:=5: y:=6	6
${\text{getDenom}\left(\frac{x+2}{y-3}\right)}$	3
$\overline{getDenom\left(\frac{2}{7}\right)}$	7
$ \frac{1}{\text{getDenom}} \left(\frac{1}{x} + \frac{y^2 + y}{y^2} \right) $	30

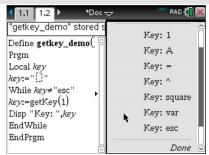
getKey()

$getKey([01]) \Rightarrow returnString$

Beschreibung:getKey() – ermöglicht ein TI-Basic-Programm zum Holen von Tastatureingaben – Handheld, Desktop und Emulator auf Desktop.

Beispiel:

 gedrückteTaste := getKey() gibt eine Taste oder eine leere Zeichenkette zurück, wenn keine Taste gedrückt wurde. Dieser


Katalog > 🗐

getKey() Beispiel:

Katalog > 🗐 getKey()

Aufruf wird umgehend zurückgegeben.

gedrückteTaste := getKey(1) wartet bis eine Taste gedrückt wird. Dieser Aufruf pausiert die Ausführung des Programms, bis eine Taste gedrückt wird.

Handhabung von Tastenbetätigungen:

Handheld/Emulatortaste	Desktop	Rückgabewert
Esc	Esc	"Esc"
Touchpad – Oben klicken	-	"nach oben"
Ein	-	"Hauptmenü"
Scratch Apps	-	"Scratchpad"
Touchpad – Linksklick	-	"links"
Touchpad – Mittig klicken	-	"Mittelpunkt"
Touchpad – Rechtsklick	-	"rechts"
Dok	-	"Dok"
Tab	Tab	"Tab"
Touchpad – Unten klicken	Abwärtspfeil	"nach unten"
Menü	-	"Menü"
Strg	Strg	keine Rückgabe
Verschieben (Shift)	Verschieben (Shift)	keine Rückgabe
Var	-	"var"
Entf	-	"del"
=	=	"="
Trigonometrie	-	"Trigonometrie"
0 bis 9	0-9	"0""9"

Handheld/Emulatortaste	Desktop	Rückgabewert
Vorlagen	_	"Vorlage"
Katalog	-	"cat"
Λ	^	"A"
	,	
X^2	- ,	"Quadrat"
/ (Divisionstaste)	/	"/"
* (Multiplikationstaste)	*	"*"
e^x	_	"Ausdr"
10^x	_	"10power"
+	+	"+"
-	-	"_"
(("("
))	")"
		"."
(-)	_	"-" (Negativ-Zeichen)
Eingabetaste	Eingabetaste	"Eingabe"
Osteuropa	-	"E" Exponentialform (wissenschaftliche Schreibweise E)
a – z	a-z	Alpha = Buchstabe gedrückt (Kleinschreibung) ("a" – "z")
Umschalt a-z	Umschalt a-z	Alpha = Buchstabe gedrückt "A" – "Z"
		Hinweis: Strg-Umschalt ergibt Feststelltaste
?!	-	"?!"
pi	_	"pi"
Flag	_	keine Rückgabe
	1.	"."
,	,	II II /

Handheld/Emulatortaste Return	Desktop –	Rückgabewert "Rückgabe"
Leerzeichen	Leerzeichen	"" (Leerzeichen)
Unzugänglich	Tasten für Sonderzeichen wie @,!,^ etc.	Das Zeichen wird zurückgegeben
-	Funktionstasten	Kein zurückgegebenes Zeichen
_	Besondere Desktop- Bedientasten	Kein zurückgegebenes Zeichen
Unzugänglich	Sonstige Desktop-Tasten, die nicht auf dem Calculator zur Verfügung stehen, während getKey() auf eine Tastenbetätigung wartet. ({, },;, :,)	Gleiches Zeichen wie in Notes (nicht in einem math. Feld)

Hinweis: Es ist wichtig zu beachten, dass das Vorhandensein von getKey() in einem Programm die Art und Weise ändert, wie sicher Ereignisse durch das System gehandhabt werden. Einige davon werden unten beschrieben.

Programm beenden und Ereignis handhaben – Auf gleiche Art als sollte der Benutzer das Programm verlassen, indem er die EIN-Taste drückt

"Support" unten bedeutet – System arbeitet wie erwartet – Programm läuft weiter.

Ereignis	Handheld-Gerät	Desktop – TI-Nspire™ Schülersoftware
Schnellumfrage	Programm beenden, Ereignis handhaben	Entspricht dem Handheld (nur TI-Nspire™ Student Software, TI-Nspire™ Navigator™ NC Teacher Software)
Verwaltung Remote-Datei	Programm beenden,	Entspricht dem Handheld.
(Einschl. Versenden der Datei 'Prüfungsmodus verlassen' von einem anderen Handheld oder Desktop-Handheld)	Ereignis handhaben	(nur TI-Nspire™ Student Software, TI-Nspire™ Navigator™ NC Teacher Software)
Klasse beenden	Programm beenden, Ereignis handhaben	Support (nur TI-Nspire™ Student Software, TI-Nspire™ Navigator™ NC Teacher Software)

Ereignis	Handheld-Gerät	Desktop – TI-Nspire™ Alle Versionen
Ti-Innovator™ Hub verbinden/trennen	Support – Kann erfolgreich Befehle an den TI- Innovator™ Hub geben. Nachdem Sie das Programm verlassen haben, arbeitet der TI- Innovator™ Hub noch mit dem Handheld weiter.	Entspricht dem Handheld

getLangInfo()		Katalog > 📳
getLangInfo()⇒Zeichenkette	getLangInfo()	"en"
Gibt eine Zeichenkette zurück, die der		

Englisch = "en"

Dänisch = "da"

Deutsch = "de"

Finnisch = "fi"

Französisch = "fr"

Italienisch = "it"

Holländisch = "nl"

Holländisch (Belgien) = "nl_BE"

Abkürzung der gegenwärtig aktiven Sprache entspricht. Sie können den Befehl zum Beispiel in einem Programm oder einer Funktion zum Bestimmen der

aktuellen Sprache verwenden.

Norwegisch = "no"

Portugiesisch = "pt"

Spanisch = "es"

Schwedisch = "sv"

Katalog > 🕮 getLockInfo()

$getLockInfo(Var) \Rightarrow Wert$

Gibt den aktuellen Gesperrt/Entsperrt-Status der Variablen Var aus.

Wert =0: Var ist nicht gesperrt oder ist nicht vorhanden.

Wert =1: Var ist gesperrt und kann nicht geändert oder gelöscht werden.

Siehe Lock, Seite 96, undunLock, Seite 186.

a:=65	65
Lock a	Done
getLockInfo(a)	1
a:=75	"Error: Variable is locked."
DelVar a	"Error: Variable is locked."
Unlock a	Done
a:=75	75
DelVar a	Done

Katalog > 🗐 getMode()

 $getMode(ModusNameGanzzahl) \Rightarrow Wert$

 $getMode(0) \Rightarrow Liste$

getMode(ModusNameGanzzahl) gibt einen Wert zurück, der die aktuelle Einstellung des Modus ModusNameGanzzahl darstellt.

getMode(0) gibt eine Liste mit Zahlenpaaren zurück. Jedes Paar enthält eine Modus-Ganzzahl und eine Einstellungs-Ganzzahl.

Eine Auflistung der Modi und ihrer Einstellungen finden Sie in der nachstehenden Tabelle.

Wenn Sie die Einstellungen mit getMode (0) → var speichern, können Sie setMode (var) in einer Funktion oder in einem Programm verwenden, um die Einstellungen nur innerhalb der Ausführung dieser Funktion bzw. dieses Programms vorübergehend wiederherzustellen. Siehe setMode(), Seite 155.

getMode(0) {1,7,2,1,3,1,4,1,5,1,6,1,7,1}	
getMode(1)	7
getMode(7)	1

Modus	Modus	
Name	Ganzzahl	Einstellen von Ganzzahlen
Angezeigte Ziffern	1	1=Fließ, 2=Fließ 1, 3=Fließ 2, 4=Fließ 3, 5=Fließ 4, 6=Fließ 5, 7=Fließ 6, 8=Fließ 7, 9=Fließ 8, 10=Fließ 9, 11=Fließ 10, 12=Fließ 11, 13=Fließ 12, 14=Fix 0, 15=Fix 1, 16=Fix 2, 17=Fix 3, 18=Fix 4, 19=Fix 5, 20=Fix 6, 21=Fix 7, 22=Fix 8, 23=Fix 9, 24=Fix 10, 25=Fix 11, 26=Fix 12
Winkel	2	1=Bogenmaß, 2=Grad, 3=Neugrad
Exponentialformat	3	1=Normal, 2=Wissenschaftlich, 3=Technisch
Reell oder komplex	4	1=Reell, 2=Kartesisch, 3=Polar
Auto oder Approx.	5	1=Auto, 2=Approximiert
Vektorformat	6	1=Kartesisch, 2=Zylindrisch, 3=Sphärisch
Basis	7	1=Dezimal, 2=Hex, 3=Binär

getNum() (Zähler holen)		Katalog > 📳
$getNum(Bruch1) \Rightarrow Wert$	x:=5: y:=6	6
Transformiert das Argument in einen Ausdruck mit gekürztem gemeinsamem Nenner und gibt dann den Zähler zurück.	$ \frac{\left(x+2\right)}{\text{getNum}\left(\frac{x+2}{y-3}\right)} $	7
	$ getNum \left(\frac{2}{7}\right) $	2
	$getNum\left(\frac{1}{x} + \frac{1}{y}\right)$	11

GetStr Hub-Menü

GetStr[EingabeString,] Var[, statusVar]

GetStr[EingabeString,] Fkt(arg1, ...argn) [, status Var]

Programmierbefehl: Verhält sich genauso wie der Befehl Get, der abgerufene Wert wird aber immer als Zeichenfolge interpretiert. Der Befehl Get interpretiert die Antwort hingegen als Ausdruck, es sei denn, sie ist in Anführungszeichen ("") gesetzt.

Hinweis: Siehe auch Get, Seite 66 und Send, Seite 152.

Zum Beispiel siehe Get.

getType() Katalog > 🕮

$getType(var) \Rightarrow String$

Gibt eine Zeichenkette zurück, die den Datentyp einer Variablen var anzeigt.

Wenn *var* nicht definiert ist, wird die Zeichenkette "NONE" zurückgegeben.

$\{1,2,3\} \rightarrow temp$	{1,2,3}
getType(temp)	"LIST"
$3 \cdot i \rightarrow temp$	3· i
getType(temp)	"EXPR"
DelVar temp	Done
getType(temp)	"NONE"

getVarInfo() Katalog > 🗐

 $getVarInfo() \Rightarrow Matrix oder String$

 $getVarInfo(BiblioNameString) \Rightarrow Matrix$ oder *String*

getVarInfo() gibt eine Informationsmatrix (Name, Typ, Erreichbarkeit einer Variablen in der Bibliothek und Gesperrt/Entsperrt-Status) für alle Variablen und Bibliotheksobjekte zurück, die im aktuellen Problem definiert sind.

Wenn keine Variablen definiert sind, gibt getVarInfo() die Zeichenfolge "KEINE" (NONE) zurück.

getVarInfo(BiblioNameString)gibt eine Matrix zurück, die Informationen zu allen Bibliotheksobjekten enthält, die in der Bibliothek BiblioNameString definiert sind. BiblioNameString muss eine Zeichenfolge (in Anführungszeichen eingeschlossener Text) oder eine Zeichenfolgenvariable sein.

Wenn die Bibliothek BiblioNameString nicht existiert, wird ein Fehler angezeigt.

getVarInfo()			"NO	NE"
Define <i>x</i> =5			L	one
Lock x			L	one
Define LibPriv <i>y</i> :	={ 1	,2,3}	L	one
Define LibPub z(x)=3	3·x ² -x	L	one
getVarInfo()	[x	"NUM"	"[]"	1]
	у	"LIST"	"LibPriv "	0
	$\lfloor z$	"FUNC"	"LibPub "	0]
getVarInfo(tmp3)				

"Error: Argument must be a string"

getVarInfo()

Katalog > 🗐

Beachten Sie das Beispiel links, in dem das Ergebnis von getVarInfo() der Variablen vs zugewiesen wird. Beim Versuch, Zeile 2 oder Zeile 3 von vs anzuzeigen, wird der Fehler "Liste oder Matrix ungültig" zurückgegeben, weil mindestens eines der Elemente in diesen Zeilen (Variable b zum Beispiel) eine Matrix ergibt.

Dieser Fehler kann auch auftreten, wenn Ans zum Neuberechnen eines **getVarInfo** ()-Ergebnisses verwendet wird.

Das System liefert den obigen Fehler, weil die aktuelle Version der Software keine verallgemeinerte Matrixstruktur unterstützt, bei der ein Element einer Matrix eine Matrix oder Liste sein kann.

a:=1				1
$b = \begin{bmatrix} 1 & 2 \end{bmatrix}$			[1	2]
c:=[1 3 7]			[1 3	7]
vs:=getVarInfo()	a	"NUM"	"[]"	0]
	b	"MAT"	"[]"	0
	c	"MAT"	"[]"	0]
vs[1]	[1	"NUM"	"[]"	0]
vs[1,1]				1
vs[2] "Err	or: Iı	ıvalid list	or matr	ix"
vs[2,1]			[1	2]

Goto (Gehe zu)

Katalog > 🗐

Goto MarkeName

Setzt die Programmausführung bei der Marke *MarkeName* fort.

MarkeName muss im selben Programm mit der Anweisung **Lbl** definiert worden sein.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define $g()$	=Func	Done
	Local temp,i	
	$0 \rightarrow temp$	
	$1 \rightarrow i$	
	Lbl top	
	$temp+i \rightarrow temp$	
	If $i < 10$ Then	
	$i+1 \rightarrow i$	
	Goto top	
	EndIf	
	Return temp	
	EndFunc	
g()		55

▶Grad (Neugrad)

Katalog > 🗐

Ausdr1 ▶Grad⇒Ausdruck

Wandelt Ausdr1 ins Winkelmaß Neugrad um.

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>Grad eintippen.

Im Grad-Modus:

(1.5)▶Grad (1.66667)⁹

Im Bogenmaß-Modus:

(1.5)▶Grad (95.493)⁹

identity()		Katalog > 🕡
identity($Ganze\ Zahl$) $\Rightarrow\ Matrix$	identity(4)	1 0 0 0
Gibt die Einheitsmatrix mit der Dimension <i>Ganzzahl</i> zurück.		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Ganzzahl muss eine positive ganze Zahl sein.		<u> </u>

If		Katalog > 💱
If BooleanExpr Anweisungen	Define $g(x)$ =Func If x <0 Then	Done
If BooleanExpr Then Block	Return x^2 EndIf	
EndIf Wann Paulosahar Ausdmidt wahr	EndFunc $g(-2)$	4

Wenn Boolescher Ausdruck wahr ergibt, wird die Einzelanweisung Anweisung oder der Anweisungsblock Block ausgeführt und danach mit Endlf fortgefahren.

Wenn Boolescher Ausdruck falsch ergibt, wird das Programm fortgesetzt, ohne dass die Einzelanweisung bzw. der Anweisungsblock ausgeführt werden.

Block kann eine einzelne Anweisung oder eine Serie von Anweisungen sein, die durch ":" getrennt sind Zeichen.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Katalog > 🔯

If BooleanExpr Then
Block1

Else

If

Block2

EndIf

Wenn *Boolescher Ausdruck* wahr ergibt, wird *Block1* ausgeführt und dann *Block2* übersprungen.

Wenn *Boolescher Ausdruck* falsch ergibt, wird *Block1* übersprungen, aber *Block2* ausgeführt.

Block1 und *Block2* können einzelne Anweisungen sein.

If BooleanExpr1 Then
Block1

Elself BooleanExpr2 Then Block2

:

Elself BooleanExprN Then

BlockN

EndIf

Gestattet Programmverzweigungen. Wenn Boolescher Ausdruck1 wahr ergibt, wird Block1 ausgeführt. Wenn Boolescher Ausdruck1 falsch ergibt, wird Boolescher Ausdruck2 bewertet usw.

Define $g(x)$ =Func	Done
If $x < 0$ Then	
Return ⁻ <i>x</i>	
Else	
Return x	
EndIf	
EndFunc	
g(12)	12
g(-12)	12

Define g(x)=Func

If x<-5 Then

Return 5

Elself x>-5 and x<0 Then

Return $\neg x$ Elself $x\ge0$ and $x\ne10$ Then

Return xElself x=10 Then

Return 3

EndIf

EndFunc

	Done
g(-4)	4
g(10)	3

ifFn() Katalog > 🗓

ifFn(BoolescherAusdruck,Wert_wenn_wahr [,Wert_wenn_falsch [,Wert_wenn_unbekannt]]) ⇒ Ausdruck, Liste oder Matrix

Wertet den Booleschen Ausdruck BoolescherAusdruck (oder jedes einzelne Element von BoolescherAusdruck) aus und erstellt ein Ergebnis auf der Grundlage folgender Regeln:

 Boolescher Ausdruck kann einen Einzelwert, eine Liste oder eine Matrix testen. ifFn({1,2,3}<2.5,{5,6,7},{8,9,10})
{5,6,10}

Testwert von **1** ist kleiner als 2.5, somit wird das entsprechende

Wert_wenn_wahr-Element von **5** in die Ergebnisliste kopiert.

Testwert von **2** ist kleiner als 2.5, somit wird das entsprechende

- Wenn ein Element von Boolescher Ausdruck als wahr bewertet wird, wird das entsprechende Element aus Wert wenn wahr zurückgegeben.
- Wenn ein Element von BoolescherAusdruck als falsch bewertet wird, wird das entsprechende Element aus Wert wenn falsch zurückgegeben. Wenn Sie Wert wenn falsch weglassen, wird Undef zurückgegeben.
- Wenn ein Element von Boolescher Ausdruck weder wahr noch falsch ist, wird das entsprechende Element aus Wert wenn unbekannt zurückgegeben. Wenn Sie Wert wenn unbekannt weglassen, wird Undef zurückgegeben.
- Wenn das zweite, dritte oder vierte Argument der Funktion ifFn() ein einzelnen Ausdruck ist, wird der Boolesche Test für jede Position in Boolescher Ausdruck durchgeführt.

Hinweis: Wenn die vereinfachte Anweisung Boolescher Ausdruck eine Liste oder Matrix einbezieht, müssen alle anderen Listen- oder Matrixanweisungen dieselbe(n) Dimension(en) haben, und auch das Ergebnis wird dieselben(n) Dimension(en) haben.

Wert wenn wahr-Element von 6 in die Ergebnisliste kopiert.

Testwert von 3 ist nicht kleiner als 2.5, somit wird das entsprechende Wert wenn falsch-Element von 10 in die Ergebnisliste kopiert.

Wert wenn wahr ist ein einzelner Wert und "entspricht" einer beliebigen ausgewählten Position.

$$ifFn({1,2,3}<2.5,{5,6,7})$$
 {5,6,undef}

Wert wenn falsch ist nicht spezifiziert. Undef wird verwendet.

Ein aus Wert wenn wahr ausgewähltes Element. Ein aus Wert wenn unbekannt ausgewähltes Element.

imag()		Katalog > 길
$imag(Value 1) \Rightarrow Wert$	$imag(1+2\cdot i)$	2
Gibt den Imaginärteil des Arguments zurück.		
$imag(List1) \Rightarrow Liste$	$\operatorname{imag}(\{-3,4-i,i\})$	{0,-1,1}
Gibt eine Liste der Imaginärteile der Elemente zurück.		
$imag(Matrix 1) \Rightarrow Matrix$	imag[1 2]	[0 0]
Gibt eine Matrix der Imaginärteile der	$ \operatorname{imag}\left(\begin{bmatrix} 1 & 2 \\ i \cdot 3 & i \cdot 4 \end{bmatrix}\right) $	[3 4]

Elemente zurück.

inString() Katalog > [[3]

inString(Quellstring, Teilstring[, Start])
⇒ Ganzzahl

inString("Hello there","the") 7 inString("ABCEFG","D") 0

Gibt die Position des Zeichens von Quellstring zurück, an der das erste Vorkommen von *Teilstring* beginnt.

Start legt fest (sofern angegeben), an welcher Zeichenposition innerhalb von Quellstring die Suche beginnt. Vorgabe = 1 (das erste Zeichen von Quellstring).

Enthält *Quellstring* die Zeichenkette *Teilstring* nicht oder ist *Start* > Länge von *Quellstring*, wird Null zurückgegeben.

int() Katalog > 🗊

 $int(Value) \Rightarrow Ganzzahl$ $int(List1) \Rightarrow Liste$ $int(Matrix1) \Rightarrow Matrix$ int(-2.5) -3. int([-1.234 0 0.37]) [-2. 0 0.]

Gibt die größte ganze Zahl zurück, die kleiner oder gleich dem Argument ist. Diese Funktion ist identisch mit **floor()**.

Das Argument kann eine reelle oder eine komplexe Zahl sein.

Für eine Liste oder Matrix wird für jedes Element die größte ganze Zahl zurückgegeben, die kleiner oder gleich dem Element ist.

intDiv() Katalog > 🕎

intDiv(Zahl1, Zahl2) \Rightarrow Ganzzahl intDiv(Liste1, Liste2) \Rightarrow Liste intDiv(Matrix1, Matrix2) \Rightarrow Matrix

intDiv(-7,2)	-3
intDiv(4,5)	0
intDiv({12,-14,-16},{5,4,-3})	{2,-3,5}

Gibt den mit Vorzeichen versehenen ganzzahligen Teil von ($Zahl1 \div Zahl2$) zurück.

Für eine Liste oder Matrix wird für jedes Elementpaar der mit Vorzeichen versehene ganzzahlige Teil von (Argument1÷Argument2) zurückgegeben.

Interpolieren ()

Katalog > 🔯

Interpolieren(xWert, xListe, yListe, yStrListe) $\Rightarrow Liste$

Diese Funktion tut folgendes:

Bei gegebenen xListe, yListe=f(xListe) und *yStrListe*=**f**'(*xListe*) für eine unbekannte Funktion f wird eine kubische Interpolierende zur Approximierung der Funktion f bei xWert verwendet. Es wird angenommen, dass *xListe* eine Liste monoton steigender oder fallender Zahlen ist: iedoch kann diese Funktion auch einen Wert zurückgeben, wenn dies nicht der Fall ist. Diese Funktion geht xListe durch und sucht nach einem Intervall [xListe[i], xListe[i+1]], das xWert enthält. Wenn sie ein solches Intervall findet, gibt sie einen interpolierten Wert für f(xWert) zurück; anderenfalls gibt sie zurück.undef.

xListe, yListe und yStrListe müssen die gleiche Dimension ≥ 2 besitzen und Ausdrücke enthalten, die zu Zahlen vereinfachbar sind.

xWert kann eine Zahl oder eine Zahlenliste sein.

Differentialgleichung: $v'=-3 \cdot v + 6 \cdot t + 5$ und v(0)=5

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Verwenden Sie die Funktion interpolate(), um die Funktionswerte für die Liste xWert zu berechnen:

$$\begin{aligned} & \textit{xvaluelist:=} seq(i,i,0,10,0.5) \\ & \{0,0.5,1.,1.5,2.,2.5,3.,3.5,4.,4.5,5.,5.5,6.,6.5, \\ & \textit{xlist:=} mat \blacktriangleright \texttt{list}(rk[1]) \\ & \{0,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.\} \\ & \textit{ylist:=} mat \blacktriangleright \texttt{list}(rk[2]) \\ & \{5.,3.19499,5.00394,6.99957,9.00593,10.9978 \\ & \textit{yprimelist:=} 3\cdot y + 6\cdot t + 5 | y = \textit{ylist} \text{ and } t = \textit{xlist} \\ & \{-10.,1.41503,1.98819,2.00129,1.98221,2.006 \\ & \texttt{interpolate}(xvaluelist,xlist,ylist,yprimelist) \\ & \{5.,2.67062,3.19499,4.02782,5.00394,6.00011 \} \end{aligned}$$

invχ²() Katalog > 🕡

invχ²(Fläche,FreiGrad)

invChi2(Fläche,FreiGrad)

Berechnet die inverse kumulative χ^2 (Chi-Quadrat) Wahrscheinlichkeitsfunktion, die durch Freiheitsgrade FreiGrad für eine bestimmte Fläche unter der Kurve festgelegt ist.

invF() Katalog > 🕎

invF

(Fläche, Frei Grad Zähler, Frei Grad Nenner)

invF

(Fläche, Frei Grad Zähler, Frei Grad Nenner)

Berechnet die inverse kumulative F Verteilungsfunktion, die durch $FreiGradZ\"{a}hler$ und FreiGradNenner für eine bestimmte $Fl\"{a}che$ unter der Kurve festgelegt ist.

invBinom() Katalog > 💓

invBinom

(CumulativeProb,NumTrials,Prob, OutputForm)⇒ Skalar oder Matrix

Die Funktion gibt anhand der angegebenen Zahl von Versuchen (NumTrials) und der Erfolgswahrscheinlichkeit jedes Versuches (Prob), die Mindestanzahl erfolgreicher Versuche k aus, so dass die kumulative Wahrscheinlichkeit für k größer oder gleich der gegebenen kumulativen Wahrscheinlichkeit (CumulativeProb) ist.

OutputForm=0, gibt Ergebnis als Skalar
(Standard) an.

OutputForm=1, gibt Ergebnis als Matrix
an.

Beispiel: Mary und Kevin spielen ein Würfelspiel. Mary soll raten, wie häufig bei 30 Mal würfeln die Zahl 6 angezeigt wird. Sollte die Zahl 6 genauso häufig oder weniger angezeigt werden, gewinnt Mary. Je niedriger die Zahl, die sie schätzt, desto höher ist ihr Gewinn. Was ist die niedrigste Zahl, die Mary angeben kann, wenn sie eine Gewinnwahrscheinlichkeit von mehr als 77 % erzielen möchte?

invBinom
$$\left(0.77,30,\frac{1}{6}\right)$$
 6
invBinom $\left(0.77,30,\frac{1}{6},1\right)$ $\left[\begin{array}{cc} 5 & 0.616447 \\ 6 & 0.776537 \end{array}\right]$

invBinomN(CumulativeProb,Prob, NumSuccess,OutputForm)⇒ Skalar oder Matrix

Die Funktion gibt anhand der Erfolgswahrscheinlichkeit bei jedem Versuch (Prob) und der Anzahl der tatsächlichen Erfolge (NumSuccess) die Mindestanzahl an Versuchen N, aus, so dass die kumulative Wahrscheinlichkeit für x kleiner oder gleich der gegebenen kumulativen Wahrscheinlichkeit (CumulativeProb) ist.

OutputForm=0, gibt Ergebnis als Skalar
(Standard) an.

OutputForm=1, gibt Ergebnis als Matrix
an

Beispiel: Monique übt Zielwürfe auf das Netz. Aus Erfahrung weiß sie, dass sie mit einer Wahrscheinlichkeit von 70 % trifft. Sie hat vor, so lange zu üben, bis sie 50 Mal getroffen hat. Wie häufig muss sie werfen, um sicherzustellen, dass die Wahrscheinlichkeit, 50 Mal zu treffen größer als 0,99 ist?

invNorm() Katalog > 💓

 $invNorm(Fläche[,\mu[,\sigma]])$

Berechnet die inverse Summennormalverteilungsfunktion für einen gegebenen Bereich unter der Normalverteilungskurve, die über μ und σ definiert ist.

invt() Katalog > 🗐

invt(Fläche,FreiGrad)

Berechnet die inverse kumulative Wahrscheinlichkeitsfunktion student-t, die über den Freiheitsgrad, df, definiert ist, für eine bestimmte Fläche unter der Kurve.

iPart() Katalog > 🗓

 $iPart(Zahl) \Rightarrow Ganzzahl$ $iPart(Listel) \Rightarrow Liste$ $iPart(Matrix l) \Rightarrow Matrix$

Gibt den ganzzahligen Teil des Arguments zurück.

iPart(-1.234) -1. iPart $\left\{\frac{3}{2}$, -2.3,7.003 $\right\}$ $\left\{1,-2.,7.\right\}$

Katalog > 🗐

iPart()

Für eine Liste oder Matrix wird der ganzzahlige Teil jedes Elements zurückgegeben.

Das Argument kann eine reelle oder eine komplexe Zahl sein.

irr() Katalog > 🕎

 $irr(CF0, CFListe [, CFFreq]) \Rightarrow Wert$

Finanzfunktion, die den internen Zinsfluss einer Investition berechnet.

CF0 ist der Anfangs-Cash-Flow zum Zeitpunkt 0; dies muss eine reelle Zahl sein.

CFListe ist eine Liste von Cash-Flow-Beträgen nach dem Anfangs-Cash-Flow CFO.

CFFreq ist eine optionale Liste, in der jedes Element die Häufigkeit des Auftretens für einen gruppierten (fortlaufenden) Cash-Flow-Betrag angibt, der das entsprechende Element von CFList ist. Der Standardwert ist 1; wenn Sie Werte eingeben, müssen diese positive Ganzzahlen < 10.000 sein.

Hinweis: Siehe auch mirr(), Seite 106.

list1:={6000,-8000,2000,-3000}	
	$\scriptstyle \{6000, -8000, 2000, -3000\}$
$list2:={2,2,2,1}$	{2,2,2,1}
irr(5000, list1, list2)	-4.64484

isPrime() Katalog > 🗓 🤅

isPrime(Zahl**)** ⇒ Boolescher konstanter Ausdruck

Gibt "wahr" oder "falsch" zurück, um anzuzeigen, ob es sich bei Zahl um eine ganze $Zahl \ge 2$ handelt, die nur durch sich selbst oder 1 ganzzahlig teilbar ist.

Übersteigt Zahl ca. 306 Stellen und hat sie keine Faktoren \leq 1021, dann zeigt is**Prime**(Zahl) eine Fehlermeldung an.

isPrime(5) true isPrime(6) false

Funktion zum Auffinden der nächsten Primzahl nach einer angegebenen Zahl:

isPrime() Katalog > 🕮

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define nextprim(n)=Func	Done
Loop	
$n+1 \rightarrow n$	
If is $Prime(n)$	
Return n	
EndLoop	
EndFunc	
nextprim(7)	11

isVoid()

 $isVoid(Var) \Rightarrow Boolescher konstanter$ Ausdruck $isVoid(Ausdruck) \Rightarrow Boolescher$ konstanter Ausdruck $isVoid(Liste) \Rightarrow Liste Boolescher$

konstanter Ausdrücke Gibt wahr oder falsch zurück, um anzuzeigen, ob das Argument ein

ungültiger Datentyp ist.

Weitere Informationen zu ungültigen Flementen finden Sie auf Seite Seite 241. isVoid(a)true isVoid({1,_,3}) { false,true,false }

Katalog > 🗐

Katalog > 🕮

L

Lbl (Marke)

Lbl MarkeName

Definiert in einer Funktion eine Marke mit dem Namen MarkeName.

Mit der Anweisung **Goto** *MarkeName* können Sie die Ausführung an der Anweisung fortsetzen, die unmittelbar auf die Marke folgt.

Für MarkeName gelten die gleichen Benennungsregeln wie für einen Variablennamen.

	Ŭ	_
Define g()=Func	Done	
Local temp,i		
$0 \rightarrow temp$		
$1 \rightarrow i$		
Lbl top		
$temp+i \rightarrow temp$		
If i<10 Then		
$i+1 \rightarrow i$		
Goto top		
EndIf		
Return temp		
EndFunc		
g()	55	

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Icm() (Kleinstes gemeinsames Vielfaches)

Katalog > 🕮

 $lcm(Zahl1, Zahl2) \Rightarrow Ausdruck$

 $lcm(Liste1, Liste2) \Rightarrow Liste$

 $lcm(Matrix1, Matrix2) \Rightarrow Matrix$

Gibt das kleinste gemeinsame Vielfache der beiden Argumente zurück. Das Icm zweier Brüche ist das Icm ihrer Zähler. dividiert durch den größten gemeinsamen Teiler (gcd) ihrer Nenner. Das Icm von Dezimalbruchzahlen ist ihr Produkt.

Für zwei Listen oder Matrizen wird das kleinste gemeinsame Vielfache der entsprechenden Elemente zurückgegeben.

 $\frac{2}{3}$,14,80

Katalog > 23

left() (Links)

 $left(Quellstring[,Anz]) \Rightarrow String$

Gibt Anz Zeichen zurück, die links in der Zeichenkette *Quellstring* enthalten sind.

Wenn Sie Anz weglassen, wird der gesamte Quellstring zurückgegeben.

 $left(Liste1[,Anz]) \Rightarrow Liste$

Gibt Anz Elemente zurück, die links in Liste1 enthalten sind.

Wenn Sie Anz weglassen, wird die gesamte Liste1 zurückgegeben.

 $left(Vergleich) \Rightarrow Ausdruck$

left("Hello",2) "He"

lcm(6,9)

 $left(\{1,3,-2,4\},3)$ {1,3,-2} Gibt die linke Seite einer Gleichung oder Ungleichung zurück.

libShortcut()

Katalog > 🕮

libShortcut(BiblioNameString, VerknNameString

[, BiblioPrivMerker]**)⇒**Liste von Variahlen

Erstellt eine Variablengruppe im aktuellen Problem, die Verweise auf alle Objekte im angegebenen Bibliotheksdokument *BiblioNameString* enthält. Fügt außerdem die Gruppenmitglieder dem Variablenmenü hinzu. Sie können dann auf jedes Objekt mit *VerknNameString* verweisen.

Setzen Sie *BiblioPrivMerker*=**0**, um private Bibliotheksobjekte auszuschließen (Standard)

Setzen Sie *BiblioPrivMerker*=1, um private Bibliotheksobjekte einzubeziehen

Informationen zum Kopieren einer Variablengruppe finden Sie unter CopyVar (Seite 27).

Informationen zum Löschen einer Variablengruppe finden Sie unter **DelVar** (Seite 42).

Dieses Beispiel setzt ein richtig gespeichertes und aktualisiertes Bibliotheksdokument namens **linalg2** voraus, das als *clearmat*, gauss1 und gauss2 definierte Objekte enthält

LinRegBx Katalog > 13

LinRegBx X,Y[,[Häuf][,Kategorie,Mit]]

Berechnet die lineare Regressiony = $a+b \cdot x$ auf Listen X und Y mit der Häufigkeit $H\ddot{a}uf$. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer *Mit* müssen die gleiche Dimension besitzen.

LinRegBx

X und Y sind Listen von unabhängigen und abhängigen Variablen.

 $H\ddot{a}uf$ ist eine optionale Liste von Häufigkeitswerten. Jedes Element in $H\ddot{a}uf$ gibt die Häufigkeit für jeden entsprechenden Datenpunkt X und Y an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente, deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a+b·x
stat.a, stat.b	Regressionskoeffizienten
stat.r ²	Bestimmungskoeffizient
stat.r	Korrelationskoeffizient
stat.Resid	Residuen von der Regression
stat.XReg	Liste der Datenpunkte in der modifizierten X-Liste, die in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde
stat.YReg	Liste der Datenpunkte in der modifizierten <i>Y-Liste</i> , die schließlich in der Regression mit den Beschränkungen für <i>Häuf</i> , <i>Kategorieliste</i> und <i>Mit-Kategorien verwendet wurde</i>
stat.FreqReg	Liste der Häufigkeiten für stat. XReg und stat. YReg

LinRegMx Katalog > [3]

LinRegMx X,Y[,[Häuf][,Kategorie,Mit]]

Katalog > 🕮

LinRegMx

Berechnet die lineare Regression y = m·x+b auf Liste X und Y mit der Häufigkeit Häuf. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer Mit müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

Häuf ist eine optionale Liste von Häufigkeitswerten. Jedes Element in Häuf gibt die Häufigkeit für ieden entsprechenden Datenpunkt X und Y an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente, deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: m·x+b
stat.m, stat.b	Regressionskoeffizienten
stat.r ²	Bestimmungskoeffizient
stat.r	Korrelationskoeffizient
stat.Resid	Residuen von der Regression
stat.XReg	Liste der Datenpunkte in der modifizierten X-Liste, die in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde
stat.YReg	Liste der Datenpunkte in der modifizierten <i>Y-Liste</i> , die schließlich in der Regression mit den Beschränkungen für <i>Häuf</i> , <i>Kategorieliste</i> und <i>Mit-Kategorien verwendet wurde</i>

Ausgabevariable	Beschreibung
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

LinRegtIntervals (Lineare Regressions-t-Intervalle)

Katalog > 🕮

LinRegtIntervals *X*,*Y*[,*F*[,**0**[,*KStufe*]]]

Für Steigung. Berechnet ein Konfidenzintervall des Niveaus K für die Steigung.

LinRegtIntervals *X*, *Y*[,*F*[,**1**, *XWert*[, *KStufe*]]]

Für Antwort. Berechnet einen vorhergesagten y-Wert, ein Niveau-K-Vorhersageintervall für eine einzelne Beobachtung und ein Niveau-K-Konfidenzintervall für die mittlere Antwort.

Eine Zusammenfassung der Ergebnisse wird in der Variablen *stat.results* gespeichert. (Seite 166.)

Alle Listen müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

F ist eine optionale Liste von Frequenzwerten. Jedes Element in F gibt die Häufigkeit für jeden entsprechenden X und Y Datenpunkt an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen \geq 0 sein.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a+b·x
stat.a, stat.b	Regressionskoeffizienten
stat.df	Freiheitsgrade
stat.r ²	Bestimmungskoeffizient
stat.r	Korrelationskoeffizient

Ausgabevariable	Beschreibung
stat.Resid	Residuen von der Regression

Nur für Steigung

Ausgabevariable	Beschreibung
[stat.CLower, stat.CUpper]	Konfidenzintervall für die Steigung
stat.ME	Konfidenzintervall-Fehlertoleranz
stat.SESlope	Standardfehler der Steigung
stat.s	Standardfehler an der Linie

Nur für Antwort

Ausgabevariable	Beschreibung
[stat.CLower, stat.CUpper]	Konfidenzintervall für die mittlere Antwort
stat.ME	Konfidenzintervall-Fehlertoleranz
stat.SE	Standardfehler der mittleren Antwort
[stat.LowerPred,	Vorhersageintervall für eine einzelne Beobachtung
stat.UpperPred]	
stat.MEPred	Vorhersageintervall-Fehlertoleranz
stat.SEPred	Standardfehler für Vorhersage
stat.ŷ	a + b · XWert

LinRegtTest (t-Test bei linearer Regression)

Katalog > 📳

LinRegtTest *X*,*Y*[,*Häuf*[,*Hypoth*]]

Berechnet eine lineare Regression auf den Xund Y-Listen und einen t-Test auf dem Wert der Steigung β und den Korrelationskoeffizienten p für die Gleichung $y=\alpha+\beta x$. Er berechnet die Null-Hypothese H_0 : β =0 (gleichwertig, ρ =0) in Bezug auf eine von drei alternativen Hypothesen.

Alle Listen müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

LinRegtTest (t-Test bei linearer Regression)

Katalog > 😰

 $H\ddot{a}uf$ ist eine optionale Liste von Häufigkeitswerten. Jedes Element in $H\ddot{a}uf$ gibt die Häufigkeit für jeden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Hypoth ist ein optionaler Wert, der eine von drei alternativen Hypothesen angibt, in Bezug auf die die Nullhypothese (H_0 : β = ρ =0) untersucht wird.

Für H_a : β 0 und ρ 0 (Standard) setzen Sie Hypoth=0

Für H_a: β <0 und ρ <0 setzen Sie *Hypoth*<0

Für H_a: β >0 und ρ >0 setzen Sie *Hypoth*>0

Eine Zusammenfassung der Ergebnisse wird in der Variablen *stat.results* gespeichert. (Seite 166.)

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a + b ·x
stat.t	t-Statistik für Signifikanztest
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
stat.df	Freiheitsgrade
stat.a, stat.b	Regressionskoeffizienten
stat.s	Standardfehler an der Linie
stat.SESlope	Standardfehler der Steigung
stat.r ²	Bestimmungskoeffizient
stat.r	Korrelationskoeffizient
stat.Resid	Residuen von der Regression

linSolve(SystemLinearerGl, Var1, Var2,...) $\Rightarrow Liste$

linSolve(LineareGl1 and LineareGl2 and ..., Var1, Var2, ...) $\Rightarrow Liste$

linSolve({LineareGl1, LineareGl2, ...}, $Var1, Var2, ... \} \Rightarrow Liste$

linSolve(SystemLinearerGl, {Var1, Var2,...}) $\Rightarrow Liste$

linSolve(LineareGl1 and LineareGl2 and ..., $\{Var1, Var2, ...\}\} \Rightarrow Liste$

linSolve({LineareGl1, LineareGl2, ...}, $\{Var1, Var2, ...\}\} \Rightarrow Liste$

Liefert eine Liste mit Lösungen für die Variablen Var1, Var2, ...

Das erste Argument muss ein System linearer Gleichungen bzw. eine einzelne lineare Gleichung ergeben. Anderenfalls tritt ein Argumentfehler auf.

Die Auswertung von linSolve(x=1 and x=2,x) führt beispielsweise zu dem Ergebnis "Argumentfehler".

linSolve $\left\{ \begin{cases} 2 \cdot x + 4 \cdot y = 3 \\ 5 \cdot x - 3 \cdot y = 7 \end{cases}, \left\{ x_{i, y} \right\} \right\}$	$\left\{\frac{37}{26}, \frac{1}{26}\right\}$
linSolve $\left\{ \begin{cases} 2 \cdot x = 3 \\ 5 \cdot x - 3 \cdot y = 7 \end{cases}, \left\{ x_{i,y} \right\} \right\}$	$\left\{\frac{3}{2},\frac{1}{6}\right\}$
linSolve $\begin{cases} apple+4 \cdot pear=23 \\ 5 \cdot apple-pear=17 \end{cases}$	pple,pear}
	$\left\{\frac{13}{3}, \frac{14}{3}\right\}$
linSolve $\begin{cases} apple \cdot 4 + \frac{pear}{3} = 14 \\ -apple + pear = 6 \end{cases}$	apple,pear}
	$\left\{ \frac{36}{13}, \frac{114}{13} \right\}$

∆list() (Listendifferenz)

 $\Delta list(Liste1) \Rightarrow Liste$

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie deltaList (...) eintippen.

Ergibt eine Liste mit den Differenzen der aufeinander folgenden Elemente in Liste1. Jedes Element in Liste1 wird vom folgenden Element in Liste1 subtrahiert. Die Ergebnisliste enthält stets ein Element weniger als die ursprüngliche Liste1.

Katalog > 🗐

ΔList({20,30,45,70}) {10,15,25}

list▶mat() (Liste in Matrix)

Katalog > 🕮

list mat(Liste [,

ElementeProZeile]) \Rightarrow Matrix

Gibt eine Matrix zurück, die Zeile für Zeile mit den Elementen aus Liste aufgefüllt wurde.

ElementeProZeile gibt (sofern angegeben) die Anzahl der Elemente pro Zeile an. Vorgabe ist die Anzahl der Elemente in Liste (eine Zeile).

Wenn Liste die resultierende Matrix nicht vollständig auffüllt, werden Nullen hinzugefügt.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie list@>mat(...) eintippen.

list▶mat({1,2,3})	[1 2 3]
list ▶ mat({1,2,3,4,5},2)	1 2
	3 4
	5 0

In() (Natürlicher Logarithmus)

ctri ex Tasten

 $ln(Wert1) \Rightarrow Wert$

 $In(Liste1) \Rightarrow Liste$

Gibt den natürlichen Logarithmus des Arguments zurück.

Gibt für eine Liste die natürlichen Logarithmen der einzelnen Elemente zurück.

ln(2.)

0.693147

Bei Komplex-Formatmodus reell:

$$ln(\{-3,1.2,5\})$$

"Error: Non-real calculation"

Bei Komplex-Formatmodus kartesisch:

$$\frac{\ln(\{-3,1.2,5\})}{\{1.09861+3.14159 \cdot \mathbf{i}, 0.182322, 1.60944\}}$$

Im Winkelmodus Bogenmaß und Komplex-Formatmodus "kartesisch":

1.83145+1.73485·*i* 0.009193-1.49086 0.448761-0.725533·i 1.06491+0.623491 -0.266891-2.08316·*i* 1.12436+1.79018·

$In(Quadratmatrix1) \Rightarrow Quadratmatrix$

Ergibt den natürlichen Matrix-Logarithmus von *Quadratmatrix1*. Dies ist nicht gleichbedeutend mit der Berechnung des natürlichen Logarithmus iedes einzelnen Elements. Näheres zum Berechnungsverfahren finden Sie im Abschnitt cos().

In() (Natürlicher Logarithmus)

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Katalog > 🕮 LnReg

LnReg X, Y[, $[H\ddot{a}uf]$ [, Kategorie, Mit]]

Berechnet die logarithmische Regression y = $a+b \cdot ln(x)$ auf Listen X und Y mit der Häufigkeit Häuf. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer Mit müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

Häuf ist eine optionale Liste von Häufigkeitswerten. Jedes Element in Häuf gibt die Häufigkeit für jeden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Flemente müssen Ganzzahlen > 0. sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente. deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Flemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a+b ·ln(x)
stat.a, stat.b	Regressionskoeffizienten
stat.r ²	Koeffizient der linearen Bestimmtheit für transformierte Daten
stat.r	Korrelationskoeffizient für transformierte Daten (ln(x), y)

Ausgabevariable	Beschreibung
stat.Resid	Mit dem logarithmischen Modell verknüpfte Residuen
stat.ResidTrans	Residuen für die lineare Anpassung transformierter Daten
stat.XReg	Liste der Datenpunkte in der modifizierten X-Liste, die in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde
stat.YReg	Liste der Datenpunkte in der modifizierten <i>Y-Liste</i> , die schließlich in der Regression mit den Beschränkungen für <i>Häuf</i> , <i>Kategorieliste</i> und <i>Mit-Kategorien verwendet wurde</i>
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

Local (Lokale Variable)

Katalog > 🗐

Local *Var1*[, *Var2*] [, *Var3*] ...

Deklariert die angegebenen Variablen *Variable* als lokale Variablen. Diese Variablen existieren nur während der Auswertung einer Funktion und werden gelöscht, wenn die Funktion beendet wird.

Hinweis: Lokale Variablen sparen Speicherplatz, da sie nur temporär existieren. Außerdem stören sie keine vorhandenen globalen Variablenwerte. Lokale Variablen müssen für For-Schleifen und für das temporäre Speichern von Werten in mehrzeiligen Funktionen verwendet werden, da Änderungen globaler Variablen in einer Funktion unzulässig sind.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define rollcount	()=Func
	Local i
	$1 \rightarrow i$
	Loop
	If $randInt(1,6)=randInt(1,6)$
	Goto end
	$i+1 \rightarrow i$
	EndLoop
	Lbl <i>end</i>
	Return i
	EndFunc
	Done
rollcount()	16
rollcount()	3

Lock

Katalog > 🕮

ctrl 10X Tasten

Lock*Var1* [, *Var2*] [, *Var3*] ...

Lock Var.

Sperrt die angegebenen Variablen bzw. die Variablengruppe, Gesperrte Variablen können nicht geändert oder gelöscht werden.

Die Systemvariable Ans können Sie nicht sperren oder entsperren, ebenso können Sie die Systemvariablengruppen stat. oder tvm. nicht sperren.

Hinweis: Der Befehl Sperren (Lock) löscht den Rückgängig/Wiederholen-Verlauf, wenn er für nicht gesperrte Variablen verwendet wird.

Siehe unLock, Seite 186, und getLockInfo(), Seite 72.

a:=65	65
Lock a	Done
getLockInfo(a)	1
a:=75	"Error: Variable is locked."
DelVar a	"Error: Variable is locked."
Unlock a	Done
a:=75	75
DelVar a	Done

log() (Logarithmus)

 $log(Wert1[,Wert2]) \Rightarrow Wert$

 $log(Liste1[,Wert2]) \Rightarrow Liste$

Gibt für den Logarithmus des Arguments zur Basis Ausdr2 zurück.

Hinweis: Siehe auch Vorlage Logarithmus, Seite 2.

Gibt bei einer Liste den Logarithmus der Elemente zur Basis Wert2 zurück.

Wenn Wert weggelassen wird, wird 10 als Basis verwendet.

0.30103
0.5
0.63093

Bei Komplex-Formatmodus reell:

$$\log_{10}(\{-3,1.2,5\})$$

"Error: Non-real calculation"

Bei Komplex-Formatmodus kartesisch:

$$\frac{\log \left(\left\{-3,1.2,5\right\}\right)}{10} \\ \left\{0.477121+1.36438\cdot \boldsymbol{i},0.079181,0.69897\right\}$$

log(Quadratmatrix1 [,Zahl2])⇒Quadratmatrix Im Winkelmodus Bogenmaß und Komplex-Formatmodus "kartesisch":

log() (Logarithmus)

Gibt den Matrix-Logarithmus von Zahl2 zur Basis Quadratmatrix1 zurück. Dies ist nicht gleichbedeutend mit der Berechnung des Logarithmus jedes Elements zur Basis Zahl2. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix I muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Wenn das Basisargument weggelassen wird, wird 10 als Basis verwendet.

0.795387+0.753438•*i* 0.003993-0.6474′. 0.194895-0.315095•*i* 0.462485+0.2707′? -0.115909-0.904706•*i* 0.488304+0.7774¢

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Logistic

Katalog > 📳

Logistic X, Y[, [Häuf] [, Kategorie, Mit]]

Berechnet die logistische Regressiony = (c/ $(1+a \cdot e^{-bx})$)auf Listen X und Y mit der Häufigkeit Häuf. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer *Mit* müssen die gleiche Dimension besitzen.

X und *Y* sind Listen von unabhängigen und abhängigen Variablen.

 $H\ddot{a}uf$ ist eine optionale Liste von Häufigkeitswerten. Jedes Element in $H\ddot{a}uf$ gibt die Häufigkeit für jeden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente, deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: c/(1+a ·e-bx)
stat.a, stat.b, stat.c	Regressionskoeffizienten
stat.Resid	Residuen von der Regression
stat.XReg	Liste der Datenpunkte in der modifizierten X-Liste, die in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde
stat.YReg	Liste der Datenpunkte in der modifizierten Y-Liste, die schließlich in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

Katalog > 🗐 LogisticD

LogisticD X, Y [, [Iterationen], [Häuf] [, Kategorie, Mit]]

Berechnet die logistische Regression y = (c/ $(1+a \cdot e^{-bx})+d)$ auf Listen X und Y mit der Häufigkeit *Häuf* unter Verwendung einer bestimmten Anzahl von Iterationen. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer Mit müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

Iterationen ist ein optionaler Wert, der angibt, wie viele Lösungsversuche maximal stattfinden. Bei Auslassung wird 64 verwendet. Größere Werte führen in der Regel zu höherer Genauigkeit, aber auch zu längeren Ausführungszeiten, und umgekehrt.

Katalog > 🗐

LogisticD

 $H\ddot{a}uf$ ist eine optionale Liste von Häufigkeitswerten. Jedes Element in $H\ddot{a}uf$ gibt die Häufigkeit für jeden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente, deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: c/(1+a ·e-bx)+d)
stat.a, stat.b, stat.c, stat.d	Regressionskoeffizienten
stat.Resid	Residuen von der Regression
stat.XReg	Liste der Datenpunkte in der modifizierten X-Liste, die in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit -Kategorien verwendet wurde
stat.YReg	Liste der Datenpunkte in der modifizierten <i>Y-Liste</i> , die schließlich in der Regression mit den Beschränkungen für <i>Häuf</i> , <i>Kategorieliste</i> und <i>Mit - Kategorien verwendet wurde</i>
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

Loop (Schleife)

Katalog > 🔯

Loop

Block

EndLoop

Führt die in *Block* enthaltenen Anweisungen wiederholt aus. Beachten Sie, dass dies eine Endlosschleife ist. Beenden Sie sie, indem Sie die Anweisung **Goto** oder **Exit** in *Block* ausführen.

Block ist eine Folge von Anweisungen, die durch das Zeichen ":" voneinander getrennt sind.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define rollcount()=Func
Local i
$1 \rightarrow i$
Loop
If $randInt(1,6)=randInt(1,6)$
Goto end
$i+1 \rightarrow i$
EndLoop
Lbl end
Return i
EndFunc

	Done
rollcount()	16
rollcount()	3

LU (Untere/obere Matrixzerlegung)

LU Matrix, lMatrix, uMatrix, pMatrix [,Tol]

Berechnet die Doolittle LU-Zerlegung (LR-Zerlegung) einer reellen oder komplexen Matrix. Die untere (bzw. linke) Dreiecksmatrix ist in *lMatrix* gespeichert, die obere (bzw. rechte) Dreiecksmatrix in *uMatrix* und die Permutationsmatrix (in welcher der bei der Berechnung vorgenommene Zeilentausch dokumentiert ist) in *pMatrix*.

 $lMatrix \cdot uMatrix = pMatrix \cdot Matrix$

Sie haben die Option, dass jedes Matrixelement als Null behandelt wird, wenn dessen absoluter Wert geringer als Tol ist. Diese Toleranz wird nur dann verwendet, wenn die Matrix Fließkommaelemente aufweist und keinerlei symbolische Variablen ohne zugewiesene Werte enthält. Anderenfalls wird Tol ignoriert.

Katalog > 🎚	Ž
-------------	---

"	
5 14 31 → <i>m1</i>	5 14 31
[3 8 18]	3 8 18
LU m1,lower,upper,perm	Done
lower	1 0 0
	$\left \frac{5}{6} 1 0 \right $
	$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}$
upper	6 12 18
	0 4 16
	[0 0 1]
perm	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
	0 1 0
	0 0 1

12 18

- Wenn Sie ctrl enter verwenden oder den Modus Auto oder Näherung auf Approximiert einstellen, werden Berechnungen in Fließkomma-Arithmetik durchgeführt.
- Wird Tol weggelassen oder nicht verwendet, so wird die Standardtoleranz folgendermaßen berechnet: 5E-14 ·max(dim(*Matrix*)) ·rowNorm (Matrix)

Der **LU**-Faktorisierungsalgorithmus verwendet partielle Pivotisierung mit Zeilentausch.

M

mat≯list() (Matrix in Liste)		Katalog > 🗐
mat≯list(Matrix)⇒Liste Gibt eine Liste zurück, die mit den Elementen aus Matrix gefüllt wurde. Die Elemente werden Zeile für Zeile aus Matrix kopiert.	$ \begin{array}{ccc} \text{mat} \blacktriangleright \text{list}(\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}) \\ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \rightarrow mI \\ \text{mat} \blacktriangleright \text{list}(mI) \end{array} $	$ \begin{cases} 1,2,3 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{cases} \{1,2,3,4,5,6\} $
Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie mat@>list() eintippen.		

max() (Maximum)		Katalog > 📳
$max(Wert1, Wert2) \Rightarrow Ausdruck$	max(2.3,1.4)	2.3
max(Liste1, Liste2)⇒Liste	$\max(\{1,2\},\{-4,3\})$	{1,3}
max(Matrix1, Matrix2)⇒Matrix		
Gibt das Maximum der beiden Argumente zurück. Wenn die Argumente zwei Listen oder Matrizen sind, wird eine Liste bzw. Matrix zurückgegeben, die den Maximalwert für jedes entsprechende Elementpaar enthält.		
$max(Liste) \Rightarrow Ausdruck$	max({0,1,-7,1.3,0.5})	1.3

max() (Maximum)

Katalog > 🕮

Gibt das größte Element von Liste zurück.

 $max(Matrix1) \Rightarrow Matrix$

Gibt einen Zeilenvektor zurück, der das größte Element jeder Spalte von Matrix 1 enthält.

Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Hinweis: Siehe auch min().

-4 0 0.3	$\frac{1}{\max \begin{bmatrix} 1 \\ -4 \end{bmatrix}}$	-3 0	7	[1	0	7]
----------	--	---------	---	----	---	----

mean() (Mittelwert)

mean(Liste[, Häufigkeitsliste])⇒Ausdruck

Gibt den Mittelwert der Flemente in Liste zurück.

Jedes *Häufigkeitsliste*-Element gewichtet die Elemente von Liste in der gegebenen Reihenfolge entsprechend.

mean(Matrix1[, Häufigkeitsmatrix]) $\Rightarrow Matrix$

Ergibt einen Zeilenvektor aus den Mittelwerten aller Spalten in Matrix 1.

Jedes Häufigkeitsmatrix-Element gewichtet die Elemente von Matrix1 in der gegebenen Reihenfolge entsprechend.

Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Katalog > 🗐

mean({0.2,0,1,-0.3,0.4})	0.26
mean({1,2,3},{3,2,1})	<u>5</u>
	3

Im Vektorformat kartesisch:

$ \text{mean} \begin{bmatrix} 0.2 & 0 \\ -1 & 3 \\ 0.4 & -0.5 \end{bmatrix} $	[-0.133333
	$\begin{bmatrix} \frac{-2}{15} & \frac{5}{6} \end{bmatrix}$
	$\begin{bmatrix} \frac{47}{15} & \frac{11}{3} \end{bmatrix}$

median() (Median)

 $median(Liste[, freqList]) \Rightarrow Ausdruck$

Gibt den Medianwert der Elemente in Liste zurück.

Katalog > 🗐

median({0.2,0,1,-0.3,0.4}) 0.2 Jedes *freqList*-Element gewichtet die Elemente von *Liste* in der gegebenen Reihenfolge entsprechend.

 $median(Matrix1[, freqMatrix]) \Rightarrow Matrix$

Gibt einen Zeilenvektor zurück, der die Medianwerte der einzelnen Spalten von *Matrix I* enthält.

Jedes *freqMatrix*-Element gewichtet die Elemente von *Matrix1* in der gegebenen Reihenfolge entsprechend.

$\text{median} \begin{bmatrix} 0.2 & 0 \\ 1 & -0.3 \\ 0.4 & -0.5 \end{bmatrix} \begin{bmatrix} 0.4 & -0.3 \end{bmatrix}$

Hinweise:

- Alle Elemente der Liste bzw. der Matrix müssen zu Zahlen vereinfachbar sein.
- Leere (ungültige) Elemente in der Liste oder Matrix werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

MedMed

Katalog > 🗐

MedMed X,Y [, Häuf] [, Kategorie, Mit]]

Berechnet die Median-Median-Liniey = $(m \cdot x + b)$ auf Listen X und Y mit der Häufigkeit $H\ddot{a}uf$. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer *Mit* müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

 $H\ddot{a}uf$ ist eine optionale Liste von Häufigkeitswerten. Jedes Element in $H\ddot{a}uf$ gibt die Häufigkeit für jeden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

MedMed Katalog > [13]

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente, deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Median-Median-Linien-Gleichung: m ·x+b
stat.m, stat.b	Modellkoeffizienten
stat.Resid	Residuen von der Median-Median-Linie
stat.XReg	Liste der Datenpunkte in der modifizierten X-Liste, die in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde
stat.YReg	Liste der Datenpunkte in der modifizierten <i>Y-Liste</i> , die schließlich in der Regression mit den Beschränkungen für <i>Häuf</i> , <i>Kategorieliste</i> und <i>Mit-Kategorien verwendet wurde</i>
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

mid() (Teil-String) Katalog > 🗐

mid(Quellstring, Start[, Anzahl])⇒String

Gibt Anzahl Zeichen aus der Zeichenkette Quellstring ab dem Zeichen mit der Nummer Start zurück.

Wird *Anzahl* weggelassen oder ist sie größer als die Länge von Quellstring, werden alle Zeichen von Quellstring ab dem Zeichen mit der Nummer Start zurückgegeben.

Anzahl muss > 0 sein. Bei Anzahl = 0wird eine leere Zeichenkette zurückgegeben.

mid("Hello there",2)	"ello there"
mid("Hello there",7,3)	"the"
mid("Hello there",1,5)	"Hello"
mid("Hello there",1,0)	"[]"

mid() (Teil-String)

Katalog > 📳

 $mid(Quellliste, Start [, Anzahl]) \Rightarrow Liste$

Gibt *Anzahl* Elemente aus *Quellliste* ab dem Element mit der Nummer *Start* zurück.

Wird *Anzahl* weggelassen oder ist sie größer als die Dimension von *Quellliste*, werden alle Elemente von *Quellliste* ab dem Element mit der Nummer *Start* zurückgegeben.

Anzahl muss \geq 0 sein. Bei Anzahl = 0 wird eine leere Liste zurückgegeben.

mid(QuellstringListe, Start[, Anzahl])⇒Liste

Gibt Anzahl Strings aus der Stringliste QuellstringListe ab dem Element mit der Nummer Start zurück.

mid({9,8,7,6},3)	{7,6}
mid({9,8,7,6},2,2)	{8,7}
mid({9,8,7,6},1,2)	{9,8}
mid({9,8,7,6},1,0)	{0}

min() (Minimum)

Katalog > 🕮

 $min(Wert1, Wert2) \Rightarrow Ausdruck$

 $min(Liste1, Liste2) \Rightarrow Liste$

 $min(Matrix1, Matrix2) \Rightarrow Matrix$

Gibt das Minimum der beiden Argumente zurück. Wenn die Argumente zwei Listen oder Matrizen sind, wird eine Liste bzw. Matrix zurückgegeben, die den Minimalwert für jedes entsprechende Elementpaar enthält.

 $min(Liste) \Rightarrow Ausdruck$

Gibt das kleinste Element von *Liste* zurück.

 $min(Matrix 1) \Rightarrow Matrix$

Gibt einen Zeilenvektor zurück, der das kleinste Element jeder Spalte von *Matrix I* enthält.

Hinweis: Siehe auch max().

nin(2.3,1.4)	1.4
nin({1.2}.{-4.3})	{-4.2}

$$\min(\{0,1,-7,1.3,0.5\}) \qquad -7$$

$$\min \begin{bmatrix} 1 & -3 & 7 \\ -4 & 0 & 0.3 \end{bmatrix} \qquad \begin{bmatrix} -4 & -3 & 0.3 \end{bmatrix}$$

mirr()

Katalog > 🗐

mirr

Finanzierungsrate ,Reinvestitionsrate,CF0,CFListe [,CFFreq])

Finanzfunktion, die den modifizierten internen Zinsfluss einer Investition zurückgibt.

Finanzierungsrate ist der Zinssatz, den Sie für die Cash-Flow-Beträge zahlen.

Reinvestitionsrate ist der Zinssatz, zu dem die Cash-Flows reinvestiert werden.

CF0 ist der Anfangs-Cash-Flow zum Zeitpunkt 0; dies muss eine reelle Zahl sein.

CFListe ist eine Liste von Cash-Flow-Beträgen nach dem Anfangs-Cash-Flow CFO.

CFFreq ist eine optionale Liste, in der jedes Element die Häufigkeit des Auftretens für einen gruppierten (fortlaufenden) Cash-Flow-Betrag angibt, der das entsprechende Element von CFListe ist. Der Standardwert ist 1; wenn Sie Werte eingeben, müssen diese positive Ganzzahlen < 10.000 sein.

Hinweis: Siehe auch irr(), Seite 83.

list1:={6000,-8000,2000,-3000	
{6000,-800	00,2000,-3000}
list2:={2,2,2,1}	{2,2,2,1}
mirr 4 65 12 5000 list1 list2	13 41608607

mod() (Modulo)		Katalog > 🗓
$mod(Wert1, Wert2) \Rightarrow Ausdruck$	mod(7,0)	7
$mod(Liste1, Liste2) \Rightarrow Liste$	mod(7,3)	1
mod(Eister) Eister/—Eiste	mod(-7,3)	2
$mod(Matrix1, Matrix2) \Rightarrow Matrix$	mod(7,-3)	-2
Gibt das erste Argument modulo das	mod(-7,-3)	-1
zweite Argument gemäß der folgenden	mod({12,-14,16},{9,7,-5})	$\{3,0,-4\}$
Identitäten zurück:		

mod(x,0) = x

mod(x,y) = x - y floor(x/y)

Ist das zweite Argument ungleich Null, ist das Ergebnis in diesem Argument periodisch. Das Ergebnis ist entweder Null oder besitzt das gleiche Vorzeichen wie das zweite Argument.

Sind die Argumente zwei Listen bzw. zwei Matrizen, wird eine Liste bzw. Matrix zurückgegeben, die den Modulus jedes Elementpaars enthält.

Hinweis: Siehe auch remain(), Seite 141

mRow() (Matrixzeilenoperation)

 $mRow(Zahl, Matrix1, Index) \Rightarrow Matrix$

Gibt eine Kopie von *Matrix1* zurück, in der jedes Element der Zeile *Index* von Matrix1 mit Zahl multipliziert ist.

Kata	امع	>	àΥZ
Nata	log.	,	89

$mRow \left[\frac{-1}{m} , \begin{bmatrix} 1 & 2 \end{bmatrix}, 2 \right]$,}	1	2
$3, \begin{bmatrix} 3 & 4 \end{bmatrix}$	')	-1	$\frac{-4}{3}$

mRowAdd() (Matrixzeilenaddition)

mRowAdd(Zahl, Matrix1, Index1, $Index2) \Rightarrow Matrix$

Gibt eine Kopie von *Matrix1* zurück. wobei iedes Element in Zeile *Index2* von Matrix1 ersetzt wird durch:

 $Zahl \times Zeile\ Index 1 + Zeile\ Index 2$

Katalog > 🗐

mRowAdd
$$\begin{pmatrix} -3, \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, 1, 2 \end{pmatrix}$$
 $\begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$

Katalog > 🕮 MultReg

MultReg Y, X1[X2[X3,...[X10]]]

Berechnet die lineare Mehrfachregression der Liste Y für die Listen X1, X2, ..., X10. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat. results gespeichert. (Seite 166.)

Alle Listen müssen die gleiche Dimension besitzen.

Informationen zu den Auswirkungen leerer Flemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: b0+b1 ·x1+b2 ·x2+
stat.b0, stat.b1,	Regressionskoeffizienten
stat.R ²	Multiples Bestimmtheitsmaß
stat.ŷList	\$List = b0+b1 ·x1+
stat.Resid	Residuen von der Regression

MultRegIntervals

Katalog > 🗐

MultRegIntervals Y, X1[,X2[,X3,... [X10]]]XWertListe[KNiveau]

Berechnet einen vorhergesagten y-Wert, ein Niveau-K-Vorhersageintervall für eine einzelne Beobachtung und ein Niveau-K-Konfidenzintervall für die mittlere Antwort.

Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen müssen die gleiche Dimension besitzen.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: b0+b1 ·x1+b2 ·x2+
stat.ŷ	Eine Punktschätzung: ŷ = b0 + b1 · xl + für XWertListe
stat.dfError	Fehler-Freiheitsgrade
stat.CLower, stat.CUpper	Konfidenzintervall für eine mittlere Antwort
stat.ME	Konfidenzintervall-Fehlertoleranz
stat.SE	Standardfehler der mittleren Antwort
stat.LowerPred,	Vorhersageintervall für eine einzelne Beobachtung
stat.UpperrPred	
stat.MEPred	Vorhersageintervall-Fehlertoleranz
stat.SEPred	Standardfehler für Vorhersage

Ausgabevariable	Beschreibung
stat.bList	Liste der Regressionskoeffizienten, {b0,b1,b2,}
stat.Resid	Residuen von der Regression

Katalog > 🔯 MultRegTests

MultRegTests *Y*, *X1*[,*X2*[,*X3*,...[,*X10*]]]

Der lineare Mehrfachregressionstest berechnet eine lineare Mehrfachregression für die gegebenen Daten sowie die globale F-Teststatistik und t-Teststatistik für die Koeffizienten.

Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgaben

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: b0+b1 ·x1+b2 ·x2+
stat.F	Globale F-Testgröße
stat.PVal	$\label{eq:mitglobaler} \mbox{Mit globaler F-Statistik verknüpfter P-Wert}$
stat.R ²	Multiples Bestimmtheitsmaß
stat.AdjR ²	Angepasster Koeffizient des multiplen Bestimmtheitsmaßes
stat.s	Standardabweichung des Fehlers
stat.DW	Durbin-Watson-Statistik; bestimmt, ob in dem Modell eine Autokorrelation erster Ordnung vorhanden ist
stat.dfReg	Regressions-Freiheitsgrade
stat.SSReg	Summe der Regressionsquadrate
stat.MSReg	Mittlere Regressionsstreuung
stat.dfError	Fehler-Freiheitsgrade
stat.SSError	Summe der Fehlerquadrate
stat.MSError	Mittleres Fehlerquadrat

Ausgabevariable	Beschreibung
stat.bList	{b0,b1,} Liste der Koeffizienten
stat.tList	Liste der t-Testgrößen, eine für jeden Koeffizienten in b-Liste
stat.PList	Liste der P-Werte für jede t-Testgröße
stat.SEList	Liste der Standardfehler für Koeffizienten in b-Liste
stat.ŷList	ŷList = b0+b1 ·x1+
stat.Resid	Residuen von der Regression
stat.sResid	Standardisierte Residuen; wird durch Division eines Residuums durch die Standardabweichung ermittelt
stat.CookDist	Cookscher Abstand; Maß für den Einfluss einer Beobachtung auf der Basis von Residuum und Hebelwert
stat.Leverage	Maß für den Abstand der Werte der unabhängigen Variable von den Mittelwerten (Hebelwerte)

N

ctrl = Tasten nand

BoolescherAusdr1 nand Boolescher Ausd 2 ergibt Boolescher Ausdruck

BoolescheListe1 nand BoolescheListe2 ergibt Boolesche Liste

BoolescheMatrix1 nand BoolescheMatrix2 ergibt Boolesche Matrix

Gibt die Negation einer logischen and Operation auf beiden Argumenten zurück. Gibt "wahr", "falsch" oder eine vereinfachte Form des Arguments zurück.

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

nand

Ganzzahl1nand $Ganzzahl2 \Rightarrow Ganzzahl$

Vergleicht zwei reelle ganze Zahlen mit Hilfe einer nand-Operation Bit für Bit. Intern werden beide ganzen Zahlen in binäre 64-Bit-Zahlen mit Vorzeichen konvertiert. Beim Vergleich der sich entsprechenden Bits ist das Ergebnis dann 0. wenn beide Bits 1 sind: anderenfalls ist das Ergebnis 1. Der zurückgegebene Wert stellt die Bit-Ergebnisse dar und wird im jeweiligen Basis-Modus angezeigt.

Sie können die ganzen Zahlen in jeder Basis eingeben. Für eine binäre oder hexadezimale Eingabe ist das Präfix Ob bzw. Oh zu verwenden. Ohne Präfix werden ganze Zahlen als dezimal behandelt (Basis 10).

3 and 4	0
3 nand 4	-1
{1,2,3} and {3,2,1}	{1,2,1}
{1,2,3} nand {3,2,1}	{-2,-3,-2}

= Tasten

Katalog > 🗐

nCr() (Kombinationen)

$nCr(Wert1, Wert2) \Rightarrow Ausdruck$

Für ganzzahlige Wert1 und Wert2 mit $Wert1 \ge Wert2 \ge 0$ ist **nCr()** die Anzahl der Möglichkeiten, Wert1 Elemente aus Wert2 Elementen auszuwählen (auch als Binomialkoeffizient bekannt).

$nCr(Wert, 0) \Rightarrow 1$

 $nCr(Wert, negGanzzahl) \Rightarrow 0$

 $nCr(Wert, posGanzzahl) \Rightarrow Wert \cdot$ (Wert-1)... (Wert-posGanzzahl+1)/ posGanzzahl!

 $nCr(Wert, keineGanzzahl) \Rightarrow Ausdruck!/$ " Wert

-keineGanzzahl)! ·keineGanzzahl!)

 $nCr(Liste1, Liste2) \Rightarrow Liste$

nCr(z,3) z=5	10
nCr(z,3) z=6	20

 $nCr({5,4,3},{2,4,2})$ { 10,1,3 }

nCr() (Kombinationen)

Gibt eine Liste von Binomialkoeffizienten auf der Basis der entsprechenden Elementpaare der beiden Listen zurück. Die Argumente müssen Listen gleicher Größe sein.

 $nCr(Matrix1, Matrix2) \Rightarrow Matrix$

Gibt eine Matrix von Binomialkoeffizienten auf der Basis der entsprechenden Elementpaare der beiden Matrizen zurück. Die Argumente müssen Matrizen gleicher Größe sein.

$nCr \begin{bmatrix} 6 \\ 4 \end{bmatrix}$	5][2	2	15	10
ackslash 4	3][2	2	6	3]

nDerivative() Katalog > 🕎

nDerivative(Ausdr1,Var=Wert[,Ordnung]) $\Rightarrow Wert$

nDerivative(Ausdr1,Var[,Ordnung]) | Var=Wert⇒Wert

Gibt die numerische Ableitung zurück, berechnet durch automatische Ableitungsmethoden.

Wenn *Wert* angegeben ist, setzt er jede vorausgegangene Variablenzuweisung oder jede aktuelle "|" Ersetzung für die Variable außer Kraft.

Wenn die Variable *Var* keinen Zahlenwert enthält, müssen Sie *Wert* angeben.

Ordnung der Ableitung muss 1 oder 2 sein.

Hinweis: Der Algorithmus von nDerivative() hat eine Einschränkung: Er arbeitet den nicht-vereinfachten Ausdruck rekursiv ab und berechnet dabei den numerischen Wert der ersten (und ggf. der zweiten) Ableitung sowie die Auswertung jedes Unterausdrucks. Dies kann zu unerwarteten Ergebnissen führen.

nDerivative(
$$|x|,x=1$$
) 1
nDerivative($|x|,x||x=0$ undef
nDerivative($(\sqrt{x-1},x)|x=1$ undef

$$\frac{\frac{1}{\text{nDerivative}\left(x \cdot \left(x^2 + x\right)^{\frac{1}{3}}, x, 1\right) \mid x = 0}}{\text{centralDiff}\left(x \cdot \left(x^2 + x\right)^{\frac{1}{3}}, x\right) \mid x = 0}$$

Hierzu rechts ein Beispiel. Die erste Ableitung von $x \cdot (x^2+x)^(1/3)$ bei x=0 ist gleich 0. Nun ist allerdings die erste Ableitung des Unterausdrucks (x^2+x)^ (1/3) bei x=0 nicht definiert. Dieser Wert wird gleichzeitig iedoch verwendet, um die Ableitung des Gesamtausdrucks zu berechnen. Daher meldet nDerivative() das Ergebnis als nicht definiert und zeigt eine Warnmeldung an.

Wenn Sie bei der Arbeit auf diese Einschränkung stoßen, prüfen Sie die Lösung grafisch. Ggf. können Sie es auch mit centralDiff() probieren.

newList() (Neue Liste)

Katalog > 🗐

 $newList(AnzElemente) \Rightarrow Liste$

newList(4) $\{0,0,0,0\}$

newMat(2,3)

Gibt eine Liste der Dimension Anz Elemente zurück, Jedes Element ist. Null.

newMat() (Neue Matrix)

 $newMat(AnzZeil, AnzSpalt) \Rightarrow Matrix$

Gibt eine Matrix der Dimension AnzZeil mal AnzSpalt zurück, wobei die Flemente Null sind.

Kat	tal	og	>	ų,
	0	0	0]	

0 0 0

nfMax() (Numerisches Funktionsmaximum)

Katalog > 📳

 $nfMax(Ausdr, Var) \Rightarrow Wert$

nfMax(Ausdr, Var, *UntereGrenze*)⇒*Wert*

nfMax(Ausdr, Var, UntereGrenze, *ObereGrenze*)⇒*Wert*

nfMax(Ausdr. Var) | UntereGrenze <Var<ObereGrenze⇒Wert

nfMax() (Numerisches Funktionsmaximum)

Katalog > 🕮

Gibt einen möglichen numerischen Wert der Variablen *Var* zurück, wobei das lokale Maximum von *Ausdr* auftritt.

Wenn Sie *UntereGrenze* und *ObereGrenze* ersetzen, sucht die Funktion in dem geschlossenen Invervall [*UntereGrenze*, *ObereGrenze*] für das lokale Maximum.

nfMin() (Numerisches Funktionsminimum)

Katalog > 🗐

 $nfMin(Ausdr, Var) \Rightarrow Wert$

nfMin(*Ausdr***,** *Var***,** *UntereGrenze***)**⇒*Wert*

nfMin(*Ausdr*, *Var*, *UntereGrenze*, *ObereGrenze*)⇒*Wert*

nfMin(*Ausdr*, *Var***)** | *UntereGrenze* ≤*Var*≤*ObereGrenze*⇒*Wert*

Gibt einen möglichen numerischen Wert der Variablen *Var* zurück, wobei das lokale Minimum von *Ausdr* auftritt.

Wenn Sie *UntereGrenze* und *ObereGrenze* ersetzen, sucht die Funktion in dem geschlossenen Invervall [*UntereGrenze*, *ObereGrenze*] für das lokale Minimum.

nInt() (Numerisches Integral)

Katalog > 📳

nInt(*Ausdr1, Var, Untere, Obere***)**⇒*Ausdruck*

 $\operatorname{nInt}\left(e^{-x^{2}},x,-1,1\right)$

1.49365

Wenn der Integrand Ausdr1 außer Var keine anderen Variablen enthält und wenn Untere und Obere Konstanten oder positiv ∞ oder negativ ∞ sind, gibt nInt() eine Näherung für ∫(Ausdr1, Var, Untere, Obere) zurück. Diese Näherung ist der gewichtete Durchschnitt von Stichprobenwerten des Integranden im Intervall Untere<Var<Obere.

nInt() (Numerisches Integral)

Katalog > [13]

Das Berechnungsziel sind sechs signifikante Stellen. Der angewendete Algorithmus beendet die Weiterberechnung, wenn das Ziel hinreichend erreicht ist oder wenn weitere Stichproben wahrscheinlich zu keiner sinnvollen Verbesserung führen.

Wenn es scheint, dass das Berechnungsziel nicht erreicht wurde, wird die Meldung "Zweifelhafte Genauigkeit" angezeigt.

Sie können nint() verschachteln, um mehrere numerische Integrationen durchzuführen. Die Integrationsgrenzen können von außerhalb liegenden Integrationsvariablen abhängen.

$$nInt(cos(x), x, -\pi, \pi+1. E-12)$$
 -1.04144E-12

$$\frac{1}{\text{nInt}\left(\text{nInt}\left(\frac{e^{-x\cdot y}}{\sqrt{x^2 - y^2}}, y, -x, x\right), x, 0, 1\right)} \qquad 3.30423$$

nom()

 $nom(Effektivzins, CpY) \Rightarrow Wert$

Finanzfunktion zur Umrechnung des jährlichen Effektivzinssatzes Effektivzins in einen Nominalzinssatz, wobei CpY als Anzahl der Verzinsungsperioden pro Jahr gegeben ist.

Effektivzins muss eine reelle Zahl sein und CpY muss eine reelle Zahl > 0 sein.

Hinweis: Siehe auch eff(), Seite 49.

Katalog > 🗐

nom(5.90398,12)

5.75

ctrl = Tasten

nor

BoolescherAusd1norBoolescherAusdr2

ergibt Boolescher Ausdruck

BoolescheListelnorBoolescheListe2 ergibt Boolesche Liste

BoolescheMatrix1 norBoolescheMatrix2 ergibt Boolesche Matrix

Gibt die Negation einer logischen or Operation auf beiden Argumenten zurück. Gibt "wahr" oder "falsch" oder eine vereinfachte Form des Arguments zurück.

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

Ganzzahl1nor $Ganzzahl2 \Rightarrow Ganzzahl$

Vergleicht zwei reelle ganze Zahlen mit Hilfe einer nor-Operation Bit für Bit. Intern werden beide ganzen Zahlen in binäre 64-Bit-Zahlen mit Vorzeichen konvertiert. Beim Vergleich der sich entsprechenden Bits ist das Ergebnis dann 1, wenn beide Bits 1 sind; anderenfalls ist das Ergebnis O. Der zurückgegebene Wert stellt die Bit-Ergebnisse dar und wird im jeweiligen Basis-Modus angezeigt.

Sie können die ganzen Zahlen in jeder Basis eingeben. Für eine binäre oder hexadezimale Eingabe ist das Präfix Ob bzw. Oh zu verwenden. Ohne Präfix werden ganze Zahlen als dezimal behandelt (Basis 10).

3 or 4	7
3 nor 4	-8
{1,2,3} or {3,2,1}	{3,2,3}
{1,2,3} nor {3,2,1}	{-4,-3,-4}

norm()		Katalog > 🗐
norm(Matrix)⇒Ausdruck	$norm \begin{bmatrix} 1 & 2 \end{bmatrix}$	5.47723
norm(Vektor)⇒Ausdruck	$\frac{(3 \ 4)}{\operatorname{norm}([1 \ 2])}$	2.23607
Gibt die Frobeniusnorm zurück.	$\operatorname{norm}\begin{bmatrix}1\\2\end{bmatrix}$	2.23607

normCdf() (Normalverteilungswahrscheinlichkeit)

Katalog > 🕮

normCdf(untereGrenze,obereGrenze[, u $[,\sigma]$) \Rightarrow Zahl, wenn untereGrenze und obereGrenze Zahlen sind, Liste, wenn untereGrenze und obereGrenze Listen sind

normCdf() (Normalverteilungswahrscheinlichkeit)

Katalog > 🕮

Berechnet die

Normalverteilungswahrscheinlichkeit zwischen untereGrenze und obereGrenze für die angegebenen μ (Standard = 0) und σ (Standard = 1).

Für $P(X \le obereGrenze)$ setzen Sie untereGrenze = -9F999.

normPdf() (Wahrscheinlichkeitsdichte)

Katalog > 🗐

 $normPdf(XWert[,\mu[,\sigma]]) \Rightarrow Zahl$, wenn XWerteine Zahl ist, Liste, wenn XWert eine Liste ist

Berechnet die

Wahrscheinlichkeitsdichtefunktion für die Normalverteilung an einem bestimmten XWert für die vorgegebenen μ und σ.

not (nicht)	Katalog > 🗐
-------------	-------------

not

Boolescher Ausdr 1 \Rightarrow BoolescherAusdruck

Gibt "wahr" oder "falsch" oder eine vereinfachte Form des Arguments zurück.

 $not \ Ganzzahll \Rightarrow Ganzzahl$

Gibt das Einerkomplement einer reellen ganzen Zahl zurück. Intern wird Ganzzahl1 in eine 32-Bit-Dualzahl mit Vorzeichen umgewandelt. Für das Einerkomplement werden die Werte aller Bits umgekehrt (so dass 0 zu 1 wird und umgekehrt). Die Ergebnisse werden im jeweiligen Basis-Modus angezeigt.

Sie können die ganzen Zahlen mit jeder Basis eingeben. Für eine binäre oder hexadezimale Eingabe ist das Präfix Ob bzw. Oh zu verwenden. Ohne Präfix wird die ganze Zahl als dezimal behandelt (Basis 10).

not (2≥3)	true
not 0hB0▶Base16	0hFFFFFFFFFFFF4F
not not 2	2

Im Hex-Modus:

Wichtig: Null, nicht Buchstabe O.

Im Bin-Modus:

0b100101 ▶ Base10

not 0b100101	
0b111111111111111111111111	111111111111
not 0b100101▶Base10	-38

37

not (nicht)

Katalog > 🗐

Geben Sie eine dezimale ganze Zahl ein, die für eine 64-Bit-Dualform mit Vorzeichen zu groß ist, dann wird eine symmetrische Modulo-Operation ausgeführt, um den Wert in den erforderlichen Bereich zu bringen. Weitere Informationen finden Sie unter
>Base2, Seite 17.

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Hinweis: Eine binäre Eingabe kann bis zu 64 Stellen haben (das Präfix 0b wird nicht mitgezählt). Eine hexadezimale Eingabe kann bis zu 16 Stellen aufweisen.

nPr() (Permutationen)

Katalog > 🗐

nPr(Wert1,	Wert2) ⇒Ausdruck
------------	-------	--------------------

Für ganzzahlige Wert1 und Wert2 mit Wert1 ≥ Wert2 ≥ 0 ist nPr() die Anzahl der Möglichkeiten, Wert1 Elemente unter Berücksichtigung der Reihenfolge aus Wert2 Elementen auszuwählen.

$n\Pr(z,3) z=5$	60
$n\Pr(z,3) z=6$	120
$nPr({5,4,3},{2,4,2})$	{20,24,6}
$n\Pr\begin{bmatrix} 6 & 5 \\ 4 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$	$\begin{bmatrix} 30 & 20 \\ 12 & 6 \end{bmatrix}$

$nPr(Wert, 0) \Rightarrow 1$

nPr(Wert, negGanzzahl) \Rightarrow 1/ ((Wert+1) · (Wert+2)... (Wert-negGanzzahl))

 $nPr(Wert, posGanzzahl) \Rightarrow Wert \cdot (Wert-1)... (Wert-posGanzzahl+1)$

 $nPr(Wert, keineGanzzahl) \Rightarrow Wert! / (Wert-keineGanzzahl)!$

 $nPr(Liste1, Liste2) \Rightarrow Liste$

$nPr({5,4,3})$	{242}	$\{20,24,6\}$
111 11 0, 1,0	, ~, _,~ /	= 0, = 1, 0

Gibt eine Liste der Permutationen auf der Basis der entsprechenden Elementpaare der beiden Listen zurück. Die Argumente müssen Listen gleicher Größe sein.

 $nPr(Matrix1, Matrix2) \Rightarrow Matrix$

Gibt eine Matrix der Permutationen auf der Basis der entsprechenden Elementpaare der beiden Matrizen zurück. Die Argumente müssen Matrizen gleicher Größe sein.

nPr[6	5][2	2	30	20
\ 4	3 2	2	12	6

npv(Zinssatz,CFO,CFListe[,CFFreq])

Finanzfunktion zur Berechnung des Nettobarwerts: die Summe der Barwerte für die Bar-Zuflüsse und -Abflüsse. Ein positives Ergebnis für npv zeigt eine rentable Investition an.

Zinssatz ist der Satz, zu dem die Cash-Flows (der Geldpreis) für einen Zeitraum.

CF0 ist der Anfangs-Cash-Flow zum Zeitpunkt 0; dies muss eine reelle Zahl sein.

CFListe ist eine Liste der Cash-Flow-Beträge nach dem anfänglichen Cash-Flow CF0.

CFFreq ist eine Liste, in der jedes Element die Häufigkeit des Auftretens für einen gruppierten (fortlaufenden) Cash-Flow-Betrag angibt, der das entsprechende Element von CFListeist. Der Standardwert ist 1: wenn Sie Werte eingeben, müssen diese positive Ganzzahlen < 10.000 sein.

list1:={6000,-8000,2000,-3000}		
{6000,-800	00,2000,-3000}	
list2:={2,2,2,1}	{2,2,2,1}	
npv(10,5000,list1,list2)	4769.91	

nSolve() (Numerische Lösung)

nSolve(Gleichung, Var [=Schätzwert])⇒Zahl oder Fehler String

nSolve(Gleichung, Var [=Schätzwert], $UntereGrenze) \Rightarrow Zahl$ oder Fehler String

nSolve(Gleichung, Var [= Schätzwert

oder Fehler String

nSolve(Gleichung, Var[=Schätzwert]) | *UntereGrenze*≤*Var*≤*ObereGrenze* ⇒Zahl oder Fehler String

], UntereGrenze, ObereGrenze) $\Rightarrow Zahl$

Katalog > 🗐

$\frac{1}{\text{nSolve}(x^2+5\cdot x-25=9,x)}$	3.84429
$\frac{1}{\text{nSolve}(x^2=4, x=-1)}$	-2.
$\frac{1}{\text{nSolve}(x^2=4,x=1)}$	2.

Hinweis: Existieren mehrere Lösungen, können Sie mit Hilfe einer Schätzung eine bestimmte Lösung suchen.

Ermittelt iterativ eine reelle numerische Näherungslösung von Gleichung für deren eine Variable. Geben Sie die Variable an als:

Variable

oder –

Variable = reelle Zahl

Beispiel: x ist gültig und x=3 ebenfalls.

nSolve() versucht entweder einen Punkt zu ermitteln, wo der Unterschied zwischen tatsächlichem und erwartetem Wert Null ist oder zwei relativ nahe Punkte, wo der Restfehler entgegengesetzte Vorzeichen besitzt und nicht zu groß ist. Wenn nSolve() dies nicht mit einer kleinen Anzahl von Versuchen erreichen kann, wird die Zeichenkette "Keine Lösung gefunden" zurückgegeben.

nSolve
$$(x^2+5 \cdot x-25=9,x)|_{x<0}$$
 -8.84429
nSolve $(x^2+5 \cdot x-25=9,x)|_{x<0}$ and $r<0.25$
0.006886
nSolve $(x^2=-1,x)$ "No solution found"

0

OneVar (Eine Variable)

Katalog > 🗐

OneVar [1,]X[,[Häufigkeit][,Kategorie,Mit]]

OneVar [n.1X1.X2[X3[....[.X20]]]

Berechnet die 1-Variablenstatistik für bis zu 20 Listen. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

Alle Listen außer Mit müssen die gleiche Dimension besitzen.

Die X-Argumente sind Datenlisten.

Häufigkeit ist eine optionale Liste von Häufigkeitswerten. Jedes Element in Häufigkeit gibt die Häufigkeit für jeden entsprechenden X-Wert an. Der Standardwert ist 1. Alle Flemente müssen. Ganzzahlen > 0 sein.

OneVar (Eine Variable)

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente. deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Ein leeres (ungültiges) Element in einer der Listen *X*, *Freq* oder *Kategorie* führt zu einem Fehler im entsprechenden Element aller dieser Listen. Ein leeres (ungültiges) Element in einer der Listen XI bis X20 führt zu einem Fehler im entsprechenden Element aller dieser Listen. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Ausgabevariable	Beschreibung
stat.x̄	Mittelwert der x-Werte
stat.Σx	Summe der x-Werte
$stat.\Sigma x^2$	Summe der x²-Werte
stat.sx	Stichproben-Standardabweichung von x
stat. x	Populations-Standardabweichung von x
stat.n	Anzahl der Datenpunkte
stat.MinX	Minimum der x-Werte
stat.Q ₁ X	1. Quartil von x
stat.MedianX	Median von x
stat.Q ₃ X	3. Quartil von x
stat.MaxX	Maximum der x-Werte
stat.SSX	Summe der Quadrate der Abweichungen der x-Werte vom Mittelwert

Katalog > 🗐 or (oder)

BoolescherAusd1orBoolescherAusdr2 ergibt Boolescher Ausdruck

BoolescheListelorBoolescheListe2 ergibt Boolesche Liste

or (oder) Katalog > 🕮

BoolescheMatrix1orBoolescheMatrix2 ergibt Boolesche Matrix

Gibt "wahr" oder "falsch" oder eine vereinfachte Form des ursprünglichen Terms zurück.

Gibt "wahr" zurück, wenn ein Ausdruck oder beide Ausdrücke zu "wahr" ausgewertet werden. Gibt nur dann "falsch" zurück, wenn beide Ausdrücke "falsch" ergeben.

Hinweis: Siehe xor.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Ganzzahl1or $Ganzzahl2 \Rightarrow Ganzzahl$

Vergleicht zwei reelle ganze Zahlen mit Hilfe einer or-Operation Bit für Bit. Intern werden beide ganzen Zahlen in binäre 32-Bit-Zahlen mit Vorzeichen konvertiert. Beim Vergleich der sich entsprechenden Bits ist das Ergebnis dann 1, wenn eines der Bits 1 ist; das Ergebnis ist nur dann 0, wenn beide Bits 0 sind. Der zurückgegebene Wert stellt die Bit-Ergebnisse dar und wird im jeweiligen Basis-Modus angezeigt.

Sie können die ganzen Zahlen in jeder Basis eingeben. Für eine binäre oder hexadezimale Eingabe ist das Präfix Ob bzw. Oh zu verwenden. Ohne Präfix werden ganze Zahlen als dezimal behandelt (Basis 10).

Define $g(x)$	=Func	Done
	If $x \le 0$ or $x \ge 5$	
	Goto end	
	Return $x \cdot 3$	
	Lbl end	
	EndFunc	
g(3)		9
g(0)	A function did not return a	a value

Im Hex-Modus:

0h7AC36 or 0h3D5F	0h7BD7F

Wichtig: Null, nicht Buchstabe O.

Im Bin-Modus:

0b100101 or 0b100	0b100101
-------------------	----------

Hinweis: Eine binäre Eingabe kann bis zu 64 Stellen haben (das Präfix Ob wird nicht mitgezählt). Eine hexadezimale Eingabe kann bis zu 16 Stellen aufweisen.

Geben Sie eine dezimale ganze Zahl ein, die für eine 64-Bit-Dualform mit Vorzeichen zu groß ist, dann wird eine symmetrische Modulo-Operation ausgeführt, um den Wert in den erforderlichen Bereich zu bringen. Weitere Informationen finden Sie unter ▶Base2. Seite 17.

Hinweis: Siehe xor.

ord() (Numerischer Zeichencode)	Katalog > 🗐	
$ord(String) \Rightarrow Ganzzahl$	ord("hello")	104
$ord(Liste1) \Rightarrow Liste$	char(104)	"h"
Olu(Lisie1) \(\rightarrow Lisie\)	ord(char(24))	24
Gibt den Zahlenwert (Code) des ersten	ord({ "alpha" "beta" })	{97.98}

P

P>Rx() (Kartesische x-Koordinate)

Zeichens der Zeichenkette String zurück. Handelt es sich um eine Liste, wird der Code des ersten Zeichens jedes Listenelements zurückgegeben.

Katalog > 🔯

 $P \to Rx(rAusdr, \theta Ausdr) \Rightarrow Ausdruck$

 $P Rx(rListe, \theta Liste) \Rightarrow Liste$

 $P Rx(rMatrix, \theta Matrix) \Rightarrow Matrix$

Gibt die äquivalente x-Koordinate des Paars (r, θ) zurück.

Hinweis: Das θ-Argument wird gemäß deraktuellen Winkelmoduseinstellung als Grad, Neugrad oder Bogenmaß interpretiert. Ist das Argument ein Ausdruck, können Sie °, g oder r benutzen, um die Winkelmoduseinstellung temporär zu ändern.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie P@>Rx (...) eintippen.

Im Bogenmaß-Modus:

$$\frac{P \triangleright Rx(4,60^{\circ})}{P \triangleright Rx\left\{\left\{-3,10,1.3\right\},\left\{\frac{\pi}{3},\frac{-\pi}{4},0\right\}\right\}} \\
\left\{-1.5,7.07107,1.3\right\}$$

P>Ry() (Kartesische v-Koordinate)

Katalog > 🕮

 $P \triangleright R \vee (rWert, \theta Wert) \Rightarrow Wert$

 $P \rightarrow R \vee (rListe, \theta Liste) \Rightarrow Liste$

 $P \rightarrow R y (rMatrix, \theta Matrix) \Rightarrow Matrix$

Gibt die äquivalente y-Koordinate des Paars (r, θ) zurück.

Hinweis: Das θ-Argument wird gemäß deraktuellen Winkelmoduseinstellung als Grad, Neugrad oder Bogenmaß interpretiert.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie P@>Ry (...) eintippen.

Im Bogenmaß-Modus:

$$\frac{\text{P} \text{Ry}(4,60^{\circ})}{\text{P} \text{Ry}\left\{\left\{-3,10,1.3\right\},\left\{\frac{\pi}{3},\frac{-\pi}{4},0\right\}\right\}} \\
\left\{\left\{-2.59808,-7.07107,0\right\}\right\}$$

PassErr (ÜbgebFeh)

Katalog > 🕮

PassErr

Übergibt einen Fehler an die nächste Stufe.

Wenn die Systemvariable *Fehlercode* (errCode) Null ist, tut PassErr nichts.

Das Else im Block Try...Else...EndTry muss CirErr oder PassErr verwenden. Wenn der Fehler verarbeitet oder ignoriert werden soll, verwenden Sie ClrErr, Wenn nicht bekannt ist, was mit dem Fehler zu tun ist, verwenden Sie PassErr, um ihn an den nächsten Error Handler zu übergeben. Wenn keine weiteren Trv...Else...EndTrv Error Handler unerledigt sind, wird das Fehlerdialogfeld als normal angezeigt.

Hinweis: Siehe auch LöFehler, Seite 24, und Versuche. Seite 179.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Ein Beispiel zu PassErr finden Sie im Beispiel 2 unter Befehl Versuche (Try), Seite 179

piecewise() (Stückweise)

Katalog > 📳

piecewise(Ausdr1 [, Bedingung1 [,
Ausdr2 [, Bedingung2 [, ...]]]])

Define $p(x) = \begin{cases} x, & x > 0 \\ \text{undef}, x \le 0 \end{cases}$ $\frac{p(1)}{p(-1)}$ undef

Gibt Definitionen für eine stückweise definierte Funktion in Form einer Liste zurück. Sie können auch mit Hilfe einer Vorlage stückweise Definitionen erstellen.

Hinweis: Siehe auch Vorlage Stückweise,

poissCdf() Katalog > 👰

poissCdf

(\(\lambda\), untereGrenze, obereGrenze) \(\Rightarrow\) Zahl, wenn untereGrenze und obereGrenze Zahlen sind, Liste, wenn untereGrenze und obereGrenze Listen sind

poissCdf(\(\lambda\),obereGrenze)(für P(0≤X ≤obereGrenze)⇒Zahl, wenn obereGrenze eine Zahl ist, Liste, wenn obereGrenze eine Liste ist

Berechnet die kumulative Wahrscheinlichkeit für die diskrete Poisson-Verteilung mit dem vorgegebenen Mittelwert λ .

Für $P(X \le obereGrenze)$ setzen Sie untereGrenze = 0

poissPdf() Katalog > [2]

poissPdf(λ ,XWert) \Rightarrow Zahl, wenn XWert eine Zahl ist, Liste, wenn XWert eine Liste ist

Berechnet die Wahrscheinlichkeit für die diskrete Poisson-Verteilung mit dem vorgegebenen Mittelwert $\lambda.$

▶Polar Katalog > 👰

 Vektor ▶Polar
 [1 3.]▶Polar
 [3.16228 ∠71.5651]

▶Polar

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>Polar eintippen.

Zeigt Vektor in Polarform $[r \angle \theta]$ an. Der Vektor muss die Dimension 2 besitzen und kann eine Zeile oder eine Spalte sein.

Hinweis: ▶Polar ist eine

Anzeigeformatanweisung, keine Konvertierungsfunktion. Sie können sie nur am Ende einer Eingabezeile benutzen, und sie nimmt keine Aktualisierung von *ans* vor.

Hinweis: Siehe auch ▶Rect, Seite 138.

komplexerWert ▶Polar

Zeigt komplexerVektor in Polarform an.

- Der Grad-Modus für Winkel gibt (r∠ θ) zurück.
- Der Bogenmaß-Modus für Winkel gibt $re^{i\theta}$ zurück.

komplexerWert kann jede komplexe Form haben. Eine reiθ-Eingabe verursacht jedoch im Winkelmodus Grad einen Fehler.

Hinweis: Für eine Eingabe in Polarform müssen Klammern ($r \angle \theta$) verwendet werden.

Im Bogenmaß-Modus:

$(3+4\cdot i)$ Polar	e ^{0.927295⋅i} ⋅5
$(4 \angle \frac{\pi}{3})$ Polar	e ^{1.0472⋅i} ⋅4.

Im Neugrad-Modus:

Im Grad-Modus:

$$(3+4\cdot i)$$
 Polar $(5 \angle 53.1301)$

polyEval() (Polynom auswerten)

 $polyEval(Liste1, Ausdr1) \Rightarrow Ausdruck$

 $polyEval(Liste1, Liste2) \Rightarrow Ausdruck$

Interpretiert das erste Argument als Koeffizienten eines nach fallenden Potenzen geordneten Polynoms und gibt das Polynom bezüglich des zweiten Arguments zurück.

Katalog > 🕮

${\text{polyEval}(\{1,2,3,4\},2)}$	26
$polyEval({1,2,3,4},{2,-7})$	{26,-262}

polyRoots()

 $polyRoots(Poly,Var) \Rightarrow Liste$

 $polyRoots(KoeffListe) \Rightarrow Liste$

Die erste Syntax polyRoots(Poly,Var) gibt eine Liste mit reellen Wurzeln des Polynoms *Poly* bezüglich der Variablen Var zurück. Wenn keine reellen Wurzeln existieren, wird eine leere Liste zurückgegeben: { }.

Poly muss dabei ein Polynom in entwickelter Form in einer Variablen sein. Verwenden Sie keine nichtentwickelten Formen wie z. B. v2·v+1 oder x·x+2·x+1

Die zweite Syntax polyRoots(KoeffListe) liefert eine Liste mit reellen Wurzeln für die Koeffizienten in KoeffListe.

Hinweis: Siehe auch cPolyRoots(), Seite 34.

polyRoots(y³+1,y)	{-1}
cPolyRoots (y^3+1,y)	
{-1,0.5-0.866025 <i>i</i> ,0.5+0	0.866025 -i }
$polyRoots(x^2+2•x+1,x)$	{-1,-1}
polyRoots({1,2,1})	{-1,-1}

Katalog > 🕮

PowerReg Katalog > 🗐

PowerReg X,Y [, Häuf] [, Kategorie, Mit]]

Berechnet die Potenzregressiony = (a · (x)b)auf Listen X und Y mit der Häufigkeit Häuf. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer Mit müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

Häuf ist eine optionale Liste von Häufigkeitswerten. Jedes Element in Häuf gibt die Häufigkeit für jeden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Flemente müssen Ganzzahlen > 0. sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente. deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a ·(x)b
stat.a, stat.b	Regressionskoeffizienten
stat.r ²	Koeffizient der linearen Bestimmtheit für transformierte Daten
stat.r	Korrelationskoeffizient für transformierte Daten (ln(x), ln(y))
stat.Resid	Mit dem Potenzmodell verknüpfte Residuen
stat.ResidTrans	Residuen für die lineare Anpassung transformierter Daten
stat.XReg	Liste der Datenpunkte in der modifizierten X-Liste, die in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde
stat.YReg	Liste der Datenpunkte in der modifizierten Y-Liste, die schließlich in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

Katalog > 🗐 **Prgm**

Prgm Block EndPrgm

Vorlage zum Erstellen eines benutzerdefinierten Programms. Muss mit dem Befehl Definiere (Define), Definiere LibPub (Define LibPub) oder Definiere LibPriv (Define LibPriv) verwendet werden.

GCD berechnen und Zwischenergebnisse anzeigen.

Prgm

Katalog > 🔯

Block kann eine einzelne Anweisung, eine Reihe von durch das Zeichen ":" voneinander getrennten Anweisungen oder eine Reihe von Anweisungen in separaten Zeilen sein.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define $proggcd(a,b)$ =	=Prgm
	Local d
	While $b\neq 0$
	d := mod(a,b)
	a := b
	b := d
	Disp a ," ", b
	EndWhile
	Disp "GCD=", a
	En JD.

	EndPrgm	
		Done
proggcd(4560,450)		
		450 60
		60 30
		30 0
		GCD=30
		Done

prodSeq()

Siehe Π (), Seite 212.

Product (PI) (Produkt)

Siehe Π (), Seite 212.

product() (Produkt)		Katalog > 📳
product(Liste[, Start[, $Ende]$) \Rightarrow Ausdruck	product({1,2,3,4})	24
Gibt das Produkt der Elemente von <i>Liste</i> zurück. <i>Start</i> und <i>Ende</i> sind optional. Sie geben einen Elementebereich an.	product({4,5,8,9},2,3)	40
$product(Matrix1[, Start[, Ende]]) \Rightarrow Matrix$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[28 80 162]
Gibt einen Zeilenvektor zurück, der die Produkte der Elemente aus den Spalten von <i>Matrix1</i> enthält. <i>Start</i> und <i>Ende</i> sind optional. Sie geben einen Zeilenbereich an.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[4 10 18]

Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

propFrac() (Echter Bruch)

Katalog > 🗐

 $propFrac(Wert1[, Var]) \Rightarrow Wert$

propFrac(rationale Wert) gibt rationale Wert als Summe einer ganzen Zahl und eines Bruchs zurück, der das gleiche Vorzeichen besitzt und dessen Nenner größer ist als der Zähler.

propFrac(rationaler Ausdruck, Var) gibt die Summe der echten Brüche und ein Polynom bezüglich Var zurück. Der Grad von Var im Nenner übersteigt in iedem echten Bruch den Grad von Var im Zähler. Gleichartige Potenzen von Var werden zusammengefasst. Die Terme und Faktoren werden mit Var als der Hauptvariablen sortiert.

Wird *Var* weggelassen, wird eine Entwicklung des echten Bruchs bezüglich der wichtigsten Hauptvariablen vorgenommen. Die Koeffizienten des Polynomteils werden dann zuerst bezüglich der wichtigsten Hauptvariablen entwickelt usw.

Mit der Funktion propFrac() können Sie gemischte Brüche darstellen und die Addition und Subtraktion bei gemischten Brüchen demonstrieren.

$propFrac\left(\frac{4}{3}\right)$	$1+\frac{1}{3}$
$\operatorname{propFrac}\left(\frac{-4}{3}\right)$	$-1-\frac{1}{3}$

$\operatorname{propFrac}\left(\frac{11}{7}\right)$	$1 + \frac{4}{7}$
$\operatorname{propFrac}\left(3+\frac{1}{11}+5+\frac{3}{4}\right)$	$8+\frac{37}{44}$
$\operatorname{propFrac}\left(3 + \frac{1}{11} - \left(5 + \frac{3}{4}\right)\right)$	$-2 - \frac{29}{44}$

Q

Katalog > 🕮 OR

QR *Matrix*, *qMatrix*, *rMatrix*[, *Tol*]

Die Fließkommazahl (9,) in m1 bewirkt, dass das Ergebnis in Fließkommaform berechnet wird.

QR Katalog > 🕮

Berechnet die Householdersche QR-Faktorisierung einer reellen oder komplexen Matrix. Die sich ergebenden Q- und R-Matrzen werden in den angegebenen Matrix gespeichert. Die Q-Matrix ist unitär. Bei der R-Matrix handelt es sich um eine obere Dreiecksmatrix.

Sie haben die Option, dass jedes Matrixelement als Null behandelt wird, wenn dessen absoluter Wert geringer als Tol ist. Diese Toleranz wird nur dann verwendet, wenn die Matrix Fließkommaelemente aufweist und keinerlei symbolische Variablen ohne zugewiesene Werte enthält. Anderenfalls wird *Tol* ignoriert.

- Wenn Sie ctri enter verwenden oder den Modus Auto oder Näherung auf Approximiert einstellen, werden Berechnungen in Fließkomma-Arithmetik durchgeführt.
- Wird *Tol* weggelassen oder nicht verwendet, so wird die Standardtoleranz folgendermaßen berechnet: $5E-14 \cdot max(dim(Matrix)) \cdot rowNorm$ (Matrix)

Die QR-Faktorisierung wird anhand von Householderschen Transformationen numerisch berechnet. Die symbolische Lösung wird mit dem Gram-Schmidt-Verfahren berechnet. Die Spalten in *qMatName* sind die orthonormalen Basisvektoren, die den durch *Matrix* definierten Raum aufspannen.

$ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} $	$\rightarrow m1$		$\begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}$	2 5 8	3 6 9.]
QR $m1,q$	m,rm			D	one
qm	0.123091	0.904534	0.40	082	48]
	0.492366	0.301511	-0.8	164	197

	0.492300		
	0.86164	-0.301511	0.408248
rm	8.12404	4 9.60114	11.0782
	0.	0.904534	1.80907
	0.	0.	0.

QuadReg Katalog > 🗐

QuadReg X,Y [, Häuf] [, Kategorie, Mit]]

QuadReg Katalog > 🕮

Berechnet die quadratische polynomiale Regressiony = $a \cdot x^2 + b \cdot x + cauf Listen X und Y$ mit der Häufigkeit *Häuf*. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat. results gespeichert. (Seite 166.)

Alle Listen außer Mit müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

Häuf ist eine optionale Liste von Häufigkeitswerten. Jedes Element in Häuf gibt die Häufigkeit für jeden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Flemente müssen Ganzzahlen > 0. sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente. deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a · x²+b · x+c
stat.a, stat.b, stat.c	Regressionskoeffizienten
stat.R ²	Bestimmungskoeffizient
stat.Resid	Residuen von der Regression
stat.XReg	Liste der Datenpunkte in der modifizierten X - $Liste$, die in der Regression mit den Beschränkungen für $H\ddot{a}uf$, $Kategorieliste$ und Mit - $Kategorien$ $verwendet wurde$
stat.YReg	Liste der Datenpunkte in der modifizierten <i>Y-Liste</i> , die schließlich in der Regression mit den Beschränkungen für <i>Häuf</i> , <i>Kategorieliste</i> und <i>Mit-Kategorien verwendet wurde</i>
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

Katalog > 🗐

QuartReg

QuartReg X,Y [, Häuf] [, Kategorie, Mit]]

Berechnet die polynomiale Regression vierter Ordnungy = $a \cdot x^4 + b \cdot x^3 + c \cdot x^2 + d \cdot x + eauf$ Listen X und Y mit der Häufigkeit $H\ddot{a}uf$. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer *Mit* müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

 $H\ddot{a}uf$ ist eine optionale Liste von Häufigkeitswerten. Jedes Element in $H\ddot{a}uf$ gibt die Häufigkeit für jeden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente, deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: $a \cdot x^4 + b \cdot x^3 + c \cdot x^2 + d \cdot x + e$
stat.a, stat.b, stat.c, stat.d, stat.e	Regressionskoeffizienten
stat.R ²	Bestimmungskoeffizient
stat.Resid	Residuen von der Regression
stat.XReg	Liste der Datenpunkte in der modifizierten X-Liste, die in der Regression mit den Beschränkungen für Häuf, Kategorieliste und Mit-Kategorien verwendet wurde

Ausgabevariable	Beschreibung
stat.YReg	Liste der Datenpunkte in der modifizierten <i>Y-Liste</i> , die schließlich in der Regression mit den Beschränkungen für <i>Häuf</i> , <i>Kategorieliste</i> und <i>Mit-Kategorien verwendet wurde</i>
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

R

R ▶ **P**θ() Katalog > 🗐

 $R \triangleright P\theta (xWert, yWert) \Rightarrow Wert$ $R \triangleright P\theta (xListe, yListe) \Rightarrow Liste$

 $R \triangleright P\theta (xMatrix, yMatrix) \Rightarrow Matrix$

Gibt die äquivalente θ -Koordinate des Paars (x, y) zurück.

Hinweis: Das Ergebnis wird gemäß der aktuellen Winkelmoduseinstellung in Grad, in Neugrad oder im Bogenmaß zurückgegeben.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie R@Ptheta (...) eintippen.

Im Grad-Modus:

R▶Pθ(2,2)	45.
-----------	-----

Im Neugrad-Modus:

Im Bogenmaß-Modus:

R ► Pr() Katalog > 🗐

 $R \triangleright Pr (xWert, yWert) \Rightarrow Wert$ $R \triangleright Pr (xListe, yListe) \Rightarrow Liste$ $R \triangleright Pr(xMatrix, yMatrix) \Rightarrow Matrix$

Gibt die äquivalente r-Koordinate des Paars (x,y) zurück.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie R@Pr (...) eintippen.

Im Bogenmaß-Modus:

Katalog > 🔯 ▶ Rad $Wertl \triangleright Rad \Rightarrow Wert$ Im Grad-Modus: (1.5)▶Rad (0.02618)

▶ Rad

Katalog > 📳

Wandelt das Argument ins Bogenmaß

um.

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @Rad eintippen. Im Neugrad-Modus:

(1.5)▶Rad (0.023562)

rand() (Zufallszahl)

Katalog > 🔯

 $rand() \Rightarrow Ausdruck$ $rand(\#Trials) \Rightarrow List$

rand() gibt einen Zufallswert zwischen 0 und 1 zurück.

rand(#Trials) gibt eine Liste zurück, die #Trials Zufallswerte zwischen 0 und 1 enthält.

Setzt Ausgangsbasis für Zufallszahlengenerierung.

r

RandSeed 1147 Done rand(2) {0.158206,0.717917}

randBin() (Zufallszahl aus Binomialverteilung)

Katalog > 🕮

randBin(n, p) \Rightarrow Ausdruck randBin(n, p, #Trials) \Rightarrow Liste

randBin(n, p) gibt eine reelle Zufallszahl aus einer angegebenen Binomialverteilung zurück.

randBin(n, p, #Trials) gibt eine Liste mit #Trials reellen Zufallszahlen aus einer angegebenen Binomialverteilung zurück.

randInt(3,10)

randInt(3,10,4)

randBin(80,0.5)	46.
randBin(80,0.5,3)	{43.,39.,41.}

randInt() (Ganzzahlige Zufallszahl)

Katalog > 🕮

randint (lowBound,upBound)

⇒ Ausdruck
randint

randInt (lowBound,upBound, #Trials) $\Rightarrow Liste$

{9.,3.,4.,7.}

135

randint

lowBound,upBound) gibt eine ganzzahlige Zufallszahl innerhalb der durch UntereGrenze (lowBound) und ObereGrenze (upBound) festgelegten Grenzen zurück.

randint

lowBound ,upBound,#Trials) gibt eine Liste mit #Trials ganzzahligen 7ufallszahlen innerhalb des festgelegten Bereichs zurück.

randMat() (Zufallsmatrix)

Katalog > 🕮

 $randMat(AnzZeil, AnzSpalt) \Rightarrow Matrix$

Gibt eine Matrix der angegebenen Dimension mit ganzzahligen Werten zwischen -9 und 9 zurück.

Beide Argumente müssen zu ganzen Zahlen vereinfachbar sein.

RandSeed 1147		I	Oone
randMat(3,3)	8	-3	6
	-2	3	-6
	0	4	-6

Hinweis: Die Werte in dieser Matrix ändern sich mit iedem Drücken von enter.

randNorm() (Zufallsnorm)

Katalog > 🕮

 $randNorm(\mu, \sigma) \Rightarrow Ausdruck$ $randNorm(\mu, \sigma, \#Trials) \Rightarrow List$

randNorm(μ, σ) gibt eine Dezimalzahl aus der Gaußschen Normalverteilung zurück. Dies könnte eine beliebige reelle Zahl sein, die Werte konzentrieren sich jedoch stark in dem Intervall $[\mu-3\bullet\sigma]$, $\mu+3\cdot\sigma$].

RandSeed 1147	Done
randNorm(0,1)	0.492541
randNorm(3,4.5)	-3.54356

randNorm() (Zufallsnorm)

Katalog > 🕮

 $randNorm(\mu, \sigma, \#Trials)$ gibt eine Liste mit #Trials Dezimalzahlen aus der angegebenen Normalverteilung zurück.

randPoly() (Zufallspolynom)

Katalog > 🗐

 $randPoly(Var, Ordnung) \Rightarrow Ausdruck$

Gibt ein Polynom in *Var* der angegebenen Ordnung zurück. Die Koeffizienten sind ganze Zufallszahlen im Bereich - 9 bis 9. Der führende Koeffizient ist nicht null.

randPoly(x,5) $-2 \cdot x^5 + 3 \cdot x^4 - 6 \cdot x^3 + 4 \cdot x - 6$

RandSeed 1147

Ordnung muss zwischen 0 und 99 betragen.

randSamp() (Zufallsstichprobe)

Katalog > 🗐

 $randSamp(List, \#Trials[, noRepl]) \Rightarrow$ Liste

Gibt eine Liste mit einer Zufallsstichprobe von #Trials Versuchen aus Liste (List) zurück mit der Möglichkeiten. Stichproben zu ersetzen (noRepl=0) oder nicht zu ersetzen (noRepl=1). Die Vorgabe ist mit Stichprobenersatz.

Define $list3 = \{1,2,3,4,5\}$ Done Define list4=randSamp(list3,6) Done {1.,3.,3.,1.,3.,1.} list4

RandSeed (Zufallszahl)

Katalog > 🕮

RandSeed Zahl

Zahl = 0 setzt die Ausgangsbasis ("seed") für den Zufallszahlengenerator auf die Werkseinstellung zurück. Bei $Zahl \neq 0$ werden zwei Basen erzeugt, die in den Systemvariablen seed1 und seed2 gespeichert werden.

RandSeed 1147	Done
rand()	0.158206

real() (Reell)

Katalog > 🗐

 $real(Value1) \Rightarrow Wert$

real $(2+3\cdot i)$

Gibt den Realteil des Arguments zurück.

real() (Reell)

Katalog > 🗐

$real(List1) \Rightarrow Liste$

 $real(\{1+3\cdot i,3,i\}) \qquad \qquad \{1,3,0\}$

Gibt für jedes Element den Realteil zurück.

 $real(Matrix1) \Rightarrow Matrix$

Gibt für jedes Element den Realteil zurück.

real	1+3·i	3	[:	1	3
\	2	i		2	0

▶ Rect

Katalog > 🕮

Vektor ▶ Rect

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @Reat eintippen.

Zeigt *Vektor* in der kartesischen Form [x, y, z] an. Der Vektor muss die Dimension 2 oder 3 besitzen und kann eine Zeile oder eine Spalte sein.

Hinweis: ► Rect ist eine

Anzeigeformatanweisung, keine Konvertierungsfunktion. Sie können sie nur am Ende einer Eingabezeile benutzen, und sie nimmt keine Aktualisierung von *ans* vor.

Hinweis: Siehe auch ▶ **Polar** Seite 125.

komplexer Wert ▶ Rect

Zeigt komplexerWert in der kartesischen Form a+bi an. komplexerWert kann jede komplexe Form haben. Eine $re^{i\theta}$ -Eingabe verursacht jedoch im Winkelmodus Grad einen Fehler.

Hinweis: Für eine Eingabe in Polarform müssen Klammern (r∠ θ) verwendet werden.

Im Bogenmaß-Modus:

$\left(\frac{\pi}{4 \cdot e^{3}}\right)$ Rect	11.3986		
$\left(\left(4 \angle \frac{\pi}{3}\right)\right) \triangleright \text{Rect}$	2.+3.4641·i		

Im Neugrad-Modus:

Im Grad-Modus:

$$((4 \angle 60))$$
 Rect 2.+3.4641·*i*

Hinweis: Wählen Sie zur Eingabe von ∠ das Symbol aus der Sonderzeichenpalette des Katalogs aus.

ref() (Diagonalform)

Katalog > 🗐

 $ref(Matrix 1[. Tol]) \Rightarrow Matrix$

Gibt die Diagonalform von Matrix1 zurück.

Sie haben die Option, dass jedes Matrixelement als Null behandelt wird, wenn dessen absoluter Wert geringer als Tol ist. Diese Toleranz wird nur dann verwendet, wenn die Matrix Fließkommaelemente aufweist und keinerlei symbolische Variablen ohne zugewiesene Werte enthält. Anderenfalls wird *Tol* ignoriert.

- Wenn Sie ctrl enter verwenden oder den Modus Autom. oder Näherung auf 'Approximiert' einstellen, werden Berechnungen in Fließkomma-Arithmetik durchgeführt.
- Wird *Tol* weggelassen oder nicht verwendet, so wird die Standardtoleranz folgendermaßen berechnet: $5E-14 \cdot max(dim(Matrix1)) \cdot rowNorm$ (Matrix 1)

Vermeiden Sie nicht definierte Elemente in *Matrix1*. Sie können zu unerwarteten Ergebnissen führen.

Wenn z. B. im folgenden Ausdruck a nicht definiert ist, erscheint eine Warnmeldung und das Ergebnis wird wie folgt angezeigt:

$$\operatorname{ref} \begin{bmatrix} a & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & \frac{1}{a} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$\operatorname{ref}\begin{bmatrix} -2 & -2 & 0 & -6 \\ 1 & -1 & 9 & -9 \\ -5 & 2 & 4 & -4 \end{bmatrix}$	0	- <u>2</u> 5	- <u>4</u> 5 <u>4</u> 7	$\begin{array}{c c} 4\\ 5\\ \hline 11\\ \hline 7 \end{array}$
	0	0	1	-62 71

Die Warnung erscheint, weil das verallgemeinerte Element 1/a für a=0 nicht zulässig wäre.

Sie können dieses Problem umgehen, indem Sie zuvor einen Wert in aspeichern oder wie im folgenden Beispiel gezeigt eine Substitution mit dem womit-Operator "|" vornehmen.

	a	1	0]	0	1	0
ref	0	1	$\begin{vmatrix} 0 \\ 0 \end{vmatrix} a=0$	0	0	1
1	0	0	1 ∬	lo	0	0

Hinweis: Siehe auch rref() page 150.

RefreshProbeVars Katalog > 💱			
RefreshProbeVars		Beispiel	
Ermöglicht den Zugriff auf Sensordaten		Define temp()=	
von allen verbundenen Sensorsonden in Ihrem TI-Basic-Programm.		Prgm	
StatusVar		© Prüfen, ob System bereit ist	
Value	Status	RefreshProbeVars status	
statusVar	Normal (Programmausführung	If status=0 Then	
=0	fortsetzen)	Disp "ready"	
	Die Applikation Vernier DataQuest™ befindet sich im	For n,1,50	
	Data Collection-Modus.	RefreshProbeVars status	
statusVar =1	Hinweis: Die Applikation Vernier DataQuest™ muss sich im Messgerätmodus	temperature:=meter.temperature	
-1		Disp "Temperature: ",temperature	
	befinden, damit dieser Befehl	If temperature>30 Then	
	funktioniert.	Disp "Too hot"	
statusVar =2	Die Applikation Vernier DataQuest™ wurde nicht	EndIf	
	gestartet.	© 1 Sekunde zwischen den	
status Var	Die Applikation Vernier DataQuest™ wurde gestartet,	Messungen warten	
=3	ist jedoch noch nicht mit	Wait 1	
	Sonden verbunden.	EndFor	

RefreshProbeVars

Katalog > 🗐

Else

Disp "Not ready. Try again later"

EndIf

EndPrgm

Hinweis: Dies kann auch mit TI-InnovatorTM Hub verwendet werden.

remain() (Rest) Katalog > 🗐 remain(7,0) 7 $remain(Wert1, Wert2) \Rightarrow Wert$ remain(7,3)1 $remain(Liste1, Liste2) \Rightarrow Liste$ remain(-7,3) -1 $remain(Matrix1, Matrix2) \Rightarrow Matrix$ remain(7,-3) 1 Gibt den Rest des ersten Arguments remain(-7,-3) -1 bezüglich des zweiten Arguments gemäß remain({12,-14,16},{9,7,-5}) 3,0,1 folgender Definitionen zurück: remain(x,0) x remain(x,y) x-y = iPart(x/y)Als Folge daraus ist zu beachten, dass remain∏9 remain(-x,y) - remain(x,y). Das Ergebnis

Hinweis: Siehe auch mod() Seite 106.

ist entweder Null oder besitzt das gleiche Vorzeichen wie das erste Argument.

Request Katalog > Q

Request *promptString*, *var*[, *FlagAnz* [, *statusVar*]]

Request promptString, func(arg1, ...argn) [, FlagAnz [, statusVar]]

Programmierbefehl: Pausiert das Programm und zeigt ein Dialogfeld mit der Meldung *promptString* sowie einem Eingabefeld für die Antwort des Benutzers an. Definieren Sie ein Programm:

Define request_demo()=Prgm Request "Radius: ",r Disp "Fläche = ",pi*r² EndPrgm

Starten Sie das Programm und geben Sie eine Antwort ein:

request demo()

Wenn der Benutzer eine Antwort eingibt und auf OK klickt, wird der Inhalt des Eingabefelds in die Variable var geschrieben.

Falls der Benutzer auf Abbrechen klickt. wird das Programm fortgesetzt, ohne Eingaben zu übernehmen. Das Programm verwendet den vorherigen var-Wert, soweit var bereits definiert wurde.

Bei dem optionalen Argument FlagAnz kann es sich um einen beliebigen Ausdruck handeln.

- Wenn FlagAnz fehlt oder den Wert 1 ergibt, werden die Eingabeaufforderung und die Benutzerantwort im Calculator-Protokoll angezeigt.
- Wenn FlagAnz den Wert **0** ergibt, werden die Aufforderung und die Antwort nicht im Protokoll angezeigt.

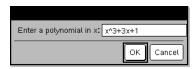
Das optionale Argument status Var ermöglicht es dem Programm, zu bestimmen, wie der Benutzer das Dialogfeld verlassen hat. Beachten Sie. dass *statusVar* das Argument *FlagAnz* erfordert.

- Wenn der Benutzer auf **OK** geklickt oder die Eingabetaste bzw. Strg+Eingabetaste gedrückt hat, wird die Variable status Var auf den Wert 1 gesetzt.
- Anderenfalls wird die Variable status Var auf den Wert 0 gesetzt.

Mit dem Argument func() kann ein Programm die Benutzerantwort als Funktionsdefinition speichern. Diese Syntax verhält sich so, als hätte der Benutzer den folgenden Befehl ausgeführt:

Define Fkt(Arg1, ...Argn) =**Benutzerantwort**

Ergebnis nach Auswahl von OK:


Radius: 6/2 Fläche = 28.2743

Definieren Sie ein Programm:

Define polynomial()=Prgm Request "Polynom in x eingeben:",p (x) Disp "Reelle Wurzeln:",polyRoots(p (x),x)EndPrgm

Starten Sie das Programm und geben Sie eine Antwort ein:

polynomial()

Ergebnis nach Eingabe von x^3+3x+1 und Auswahl von OK:

Reelle Wurzeln: {-0,322185}

Katalog > 🗐

Request

Anschließend kann das Programm die so definierte Funktion Fkt() nutzen. Die Meldung EingabeString sollte dem Benutzer die nötigen Informationen geben, damit dieser eine passende Benutzerantwort zur Vervollständigung der Funktionsdefinition eingeben kann.

Hinweis: Mit der Option Request Befehl in benutzerdefinierten Programmen, aber nicht in Funktionen.

So halten Sie ein Programm an, das einen Befehl **Request** in einer Endlosschleife enthält:

- Handheld: Halten Sie die Taste and on gedrückt und drücken Sie mehrmals enter.
- Windows®: Halten Sie die Taste F12 gedrückt und drücken Sie mehrmals die Eingabetaste.
- Macintosh®: Halten Sie die Taste F5 gedrückt und drücken Sie mehrmals die Eingabetaste.
- iPad®: Die App zeigt eine Eingabeaufforderung an. Sie können weiter warten oder abbrechen.

Hinweis: Siehe auch **RequestStr**, page 143.

RequestStr

RequestStr promptString, var[, FlagAnz]

Programmierbefehl: Verhält sich genauso wie die erste Syntax des Befehls Request, die Benutzerantwort wird jedoch immer als String interpretiert. Der Befehl Request interpretiert die Antwort hingegen als Ausdruck, es sei denn, der Benutzer setzt sie in Anführungszeichen ("").

Katalog > 🗐

Definieren Sie ein Programm:

Define requestStr_demo()=Prgm RequestStr "Thr Name:",name,0 Disp "Die Antwort hat ",dim(name)," Zeichen." EndPrgm

Starten Sie das Programm und geben Sie eine Antwort ein:

requestStr demo()

Hinweis: Sie können den Befehl RequestStr in benutzerdefinierten Programmen verwenden, jedoch nicht in Funktionen.

Zum Anhalten eines Programms mit dem Befehl RequestStr in einer Endlosschleife:

- Handheld: Halten Sie die Taste (計画 gedrückt und drücken Sie mehrmals enter .
- Windows®: Halten Sie die Taste F12 gedrückt und drücken Sie mehrmals die Eingabetaste.
- Macintosh®: Halten Sie die Taste F5 gedrückt und drücken Sie mehrmals die Eingabetaste.
- iPad®: Die App zeigt eine Eingabeaufforderung an. Sie können weiter warten oder abbrechen.

Hinweis: Siehe auch Request, page 141.

Ergebnis nach Auswahl von OK (Hinweis: Wegen DispFlag = 0 werden Eingabeaufforderung und Antwort nicht im Protokoll angezeigt):

requestStr demo()

Die Antwort hat 5 Zeichen.

Katalog > 🕮 Return

Return [Ausdr]

Gibt Ausdr als Ergebnis der Funktion zurück. Verwendbar in einem Block Func...EndFunc.

Hinweis: Verwenden Sie Zurück (Return) ohne Argument innerhalb eines Blocks Prgm...EndPrgm, um ein Programm zu beenden.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define factorial (nn) =		
Func		
Local answer,counter		
$1 \rightarrow answer$		
For counter,1,nn		
answer · counter → answer		
EndFor		
Return answer		
EndFunc		
factorial (3)	6	

right() (Rechts) Katalog > 🗐 $right(Liste1[,Anz]) \Rightarrow Liste$ right($\{1,3,-2,4\},3$) $\{3,-2,4\}$

right() (Rechts)

Katalog > 🗐

Gibt Anz Elemente zurück, die rechts in Liste1 enthalten sind.

Wenn Sie *Anz* weglassen, wird die gesamte *Liste1* zurückgegeben.

$$right(Quellstring[, Anz]) \Rightarrow string$$

Gibt Anz Zeichen zurück, die rechts in der Zeichenkette Quellstring enthalten sind.

Wenn Sie *Anz* weglassen, wird der gesamte *Quellstring* zurückgegeben.

$$right(Vergleich) \Rightarrow Ausdruck$$

Gibt die rechte Seite einer Gleichung oder Ungleichung zurück.

rk23 ()

rk23(Ausdr, Var, abhVar, {Var0, VarMax}, abhVar0, VarSchritt [, diftol]) ⇒ Matrix

rk23(AusdrSystem, Var, ListeAbhVar, {Var0, VarMax}, ListeAbhVar0, VarSchritt[, diftol]) ⇒ Matrix

rk23{AusdrListe, Var, ListeAbhVar, {Var0, VarMax}, ListeAbhVar0, VarSchritt[, diftol]) ⇒ Matrix

Verwendet die Runge-Kutta-Methode zum Lösen des Systems

$$\frac{d \ depVar}{d \ Var} = Expr(Var, depVar)$$

mit $abhVar(Var\theta)=abhVar\theta$ auf dem Intervall [$Var\theta,VarMax$]. Gibt eine Matrix zurück, deren erste Zeile die Ausgabewerte von Var definiert, wie durch VarSchritt definiert. Die zweite Zeile definiert den Wert der ersten Lösungskomponente an den entsprechenden Var Werten usw.

Ausdr ist die rechte Seite, die die gewöhnliche Differentialgleichung (ODE) definiert.

Katalog > 🗐

Differentialgleichung:

y'=0.001*y*(100-y) und y(0)=10

rk23
$$\{0.001 \cdot y \cdot (100 - y), t, y, \{0,100\}, 10, 1\}$$

$$\begin{bmatrix} 0. & 1. & 2. & 3. & 4\\ 10. & 10.9367 & 11.9493 & 13.042 & 14.2 \end{bmatrix}$$

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Dieselbe Gleichung mit diftol auf 1.E-6

Gleichungssystem:

$$\begin{cases} y1' = -y1 + 0.1 \cdot y1 \cdot y2 \\ y2' = 3 \cdot y2 - y1 \cdot y2 \end{cases}$$

mit y1(0)=2 und y2(0)=5

rk23 ()

AusdrSystem ist ein System rechter Seiten, welche das ODE-System definieren (entspricht der Ordnung abhängiger Variablen in *ListeAbhVar*).

AusdrListe ist eine Liste rechter Seiten, welche das ODE-System definieren (entspricht der Ordnung abhängiger Variablen in ListeAbhVar).

Var ist die unabhängige Variable.

ListeAbhVar ist eine Liste abhängiger Variablen.

{*Var0*, *VarMax*} ist eine Liste mit zwei Elementen, die die Funktion anweist, von *Var0* zu *VarMax* zu integrieren.

ListeAbhVar0 ist eine Liste von Anfangswerten für abhängige Variablen.

Wenn *VarSchritt* eine Zahl ungleich Null ergibt: Zeichen(*VarSchritt*) = Zeichen (*VarMax-Var0*) und Lösungen werden an Var0+i*VarSchritt für alle i=0.1.2.... zurückgegeben, sodass Var0+i*VarSchritt in [var0,VarMax] ist (möglicherweise gibt es keinen Lösungswert an VarMax).

Wenn VarSchritt Null ergibt, werden Lösungen an den "Runge-Kutta" Var-Werten zurückgegeben.

diftol ist die Fehlertoleranz (standardmäßig 0.001).

root() (Wurzel)		Katalog > 🗐
$root(Wert) \Rightarrow Wurzel$ $root(Wert1, Wert2) \Rightarrow Wurzel$	3√8	2
root(<i>Wert</i>) gibt die Quadratwurzel von	3√3	1.44225
,	3√3	

root() (Wurzel)

Katalog > 🕮

root(Wert1, Wert2) gibt die Wert2 Wurzel von Wert1 zurück. Wert1 kann eine reelle oder komplexe Fließkommakonstante, eine ganze Zahl oder eine komplexe rationale Konstante

Hinweis: Siehe auch Vorlage n-te Wurzel, Seite Seite 2.

rotate() (Rotieren)

Katalog > 🗐

 $rotate(Ganzzahl1[,\#Rotationen]) \Rightarrow$ Ganzzahl

Rotiert die Bits in einer binären ganzen Zahl. Ganzzahll kann mit jeder Basis eingegeben werden und wird automatisch in eine 64-Bit-Dualform konvertiert. Ist der Absolutwert von Ganzzahll für diese Form zu groß, wird eine symmetrische Modulo-Operation ausgeführt, um sie in den erforderlichen Bereich zu bringen. Weitere Informationen finden Sie unter ▶ Base2. Seite 17.

Ist #Rotationen positiv, erfolgt eine Rotation nach links. Ist #Rotationen negativ, erfolgt eine Rotation nach rechts. Vorgabe ist -1 (ein Bit nach rechts rotieren).

Beispielsweise in einer Rechtsrotation:

Jedes Bit rotiert nach rechts.

0b0000000000001111010110000110101

Bit ganz rechts rotiert nach ganz links.

ergibt sich:

0b10000000000000111101011000011010

Die Ergebnisse werden im jeweiligen Basis-Modus angezeigt.

 $rotate(Liste1[.\#Rotationen]) \Rightarrow Liste$

Gibt eine um #Rotationen Elemente nach rechts oder links rotierte Kopie von Liste1 zurück. Verändert Listel nicht.

Im Bin-Modus>

Ob1000000000000000000000000000000000011 rotate(256,1) 0b10000000000

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Im Hex-Modus:

rotate(0h78E)	0h3C7
rotate(0h78E,-2)	0h80000000000001E3
rotate(0h78E,2)	0h1E38

Wichtig: Geben Sie eine Dual- oder Hexadezimalzahl stets mit dem Präfix Ob bzw. Oh ein (Null, nicht der Buchstabe O).

Im Dec-Modus:

rotate() (Rotieren)

Katalog > 🕮

Ist #Rotationen positiv, erfolgt eine Rotation nach links. Ist #Rotationen negativ, erfolgt eine Rotation nach rechts. Vorgabe ist -1 (ein Element nach rechts rotieren).

rotate	String 1	[,#Rotationen]	۱ →	String
rotate	Siringi	[,#K0iaii0nen]	<i>)</i> \rightarrow	siring

Gibt eine um #Rotationen Zeichen nach rechts oder links rotierte Kopie von String1 zurück. Verändert String1 nicht.

Ist #Rotationen positiv, erfolgt eine Rotation nach links. Ist #Rotationen negativ, erfolgt eine Rotation nach rechts. Vorgabe ist −1 (ein Zeichen nach rechts rotieren)

rotate({1,2,3,4})	${4,1,2,3}$
rotate({1,2,3,4},-2)	{3,4,1,2}
rotate({1,2,3,4},1)	{2,3,4,1}

rotate("abcd")	"dabc"
rotate("abcd",-2)	"cdab"
rotate("abcd",1)	"bcda"

round() (Runden)

Katalog > 🕮

 $round(Wert1[.Stellen]) \Rightarrow Wert$

Gibt das Argument gerundet auf die angegebene Anzahl von Stellen nach dem Dezimaltrennzeichen zurück.

Stellen muss eine Ganzzahl zwischen 0 und 12 sein. Wenn Stellen nicht eingeschlossen wird, wird das Argument auf 12 Stellen gerundet zurückgegeben.

Hinweis: Die Anzeige des Ergebnisses kann von der Einstellung "Angezeigte 7iffern" beeinflusst werden.

 $round(Liste1[, Stellen]) \Rightarrow Liste$

Gibt eine Liste von Elementen zurück, die auf die angegebene Stellenzahl gerundet wurden.

 $round(Matrix 1[, Stellen]) \Rightarrow Matrix$

Gibt eine Matrix von Elementen zurück, die auf die angegebene Stellenzahl gerundet wurden.

round(
$$\{\pi,\sqrt{2},\ln(2)\},4$$
)
 $\{3.1416,1.4142,0.6931\}$

round(1.234567,3)

round
$$\begin{bmatrix} \ln(5) & \ln(3) \\ \pi & e^1 \end{bmatrix}$$
, 1 $\begin{bmatrix} 1.6 & 1.1 \\ 3.1 & 2.7 \end{bmatrix}$

rowAdd() (Zeilenaddition)

Katalog > 🗐

 $rowAdd(Matrix1, rIndex1, rIndex2) \Rightarrow$ Matrix

3 4 rowAdd 3 0 2

Gibt eine Kopie von *Matrix1* zurück, in der die Zeile rIndex2 durch die Summe der Zeilen rIndex1 und rIndex2 ersetzt ist.

rowDim() (Zeilendimension)		Katalog > 📳
$rowDim(Matrix) \Rightarrow Ausdruck$	1 2	1 2
Gibt die Anzahl der Zeilen von <i>Matrix</i> zurück.	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \rightarrow mI$	$\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$
Hinweis: Siehe auch colDim() Seite 25.	rowDim(m1)	3

rowNorm() (Zeilennorm)

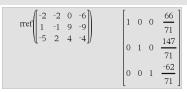
Katalog > 🕮

 $rowNorm(Matrix) \Rightarrow Ausdruck$

Gibt das Maximum der Summen der Absolutwerte der Elemente der Zeilen von Matrix zurück.

Hinweis: Alle Matrixelemente müssen zu Zahlen vereinfachbar sein. Siehe auch colNorm() Seite 26.

	6	-7]	25
rowNorm 3	4	9	
∏ 9	-9	-7∬	


rowSwap() (Zeilentausch)		Katalog > 🗐
rowSwap(Matrix1, rIndex1, rIndex2) ⇒ Matrix	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow mat$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
Gibt <i>Matrix1</i> zurück, in der die Zeilen	5 6	[5 6]
rIndex 1 und rIndex2 vertauscht sind.	rowSwap(mat,1,3)	[5 6]
		3 4

rref() (Reduzierte Diagonalform)

Katalog > 🕮

 $rref(Matrix 1[, Tol]) \Rightarrow Matrix$

Gibt die reduzierte Diagonalform von Matrix1 zurück.

Sie haben die Option, dass jedes Matrixelement als Null behandelt wird, wenn dessen absoluter Wert geringer als Tol ist. Diese Toleranz wird nur dann verwendet, wenn die Matrix Fließkommaelemente aufweist und keinerlei symbolische Variablen ohne zugewiesene Werte enthält. Anderenfalls wird *Tol* ignoriert.

- Wenn Sie ctri enter verwenden oder den Modus Autom. oder Näherung auf 'Approximiert' einstellen, werden Berechnungen in Fließkomma-Arithmetik durchgeführt.
- Wird *Tol* weggelassen oder nicht verwendet, so wird die Standardtoleranz folgendermaßen berechnet: 5E-14 •max(dim(Matrix1)) •rowNorm (Matrix1)

Liste der Sekans aller Flemente in Liste 1

Hinweis: Siehe auch ref() page 139.

S

trig Taste sec() (Sekans) $sec(Wert1) \Rightarrow Wert$ Im Grad-Modus: $sec(Liste1) \Rightarrow Liste$ sec(45) 1.41421 sec({1,2.3,4}) {1.00015,1.00081,1.00244} Gibt den Sekans von Wert1 oder eine

zurück.

sec() (Sekans)

Hinweis: Der als Argument angegebene Winkel wird gemäß der aktuellen Winkelmoduseinstellung als Grad, Neugrad oder Bogenmaß interpretiert. Sie können °, g oder ^r benutzen, um den Winkelmodus vorübergend aufzuheben.

sec⁻¹() (Arkussekans)

trig Taste

 $sec^{-1}(Wert1) \Rightarrow Wert$

 $sec^{-1}(Listel) \Rightarrow Liste$

Gibt entweder den Winkel, dessen Sekans *Wert1* entspricht, oder eine Liste der inversen Sekans aller Elemente in *Liste1* zurück.

Hinweis: Das Ergebnis wird gemäß der aktuellen Winkelmoduseinstellung in Grad, in Neugrad oder im Bogenmaß zurückgegeben.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arcsec (...) eintippen.

Im Grad-Modus:

$$sec^{-1}(1)$$
 0.

Im Neugrad-Modus:

$$\sec^{-1}\left(\sqrt{2}\right)$$
 50.

Im Bogenmaß-Modus:

$$sec^{-1}(\{1,2,5\})$$
 { 0,1.0472,1.36944 }

sech() (Sekans hyperbolicus)

Katalog > 🗐

 $sech(Wert1) \Rightarrow Wert$

 $sech(Listel) \Rightarrow Liste$

Gibt den hyperbolischen Sekans von Wert1 oder eine Liste der hyperbolischen Sekans der Elemente in Liste1 zurück sech(3) 0.099328 sech({1,2.3,4})

{0.648054,0.198522,0.036619}

sech⁻¹() (Arkussekans hyperbolicus)

Katalog > 📳

 $sech^{-1}(Wert1) \Rightarrow Wert$

 $sech^{-1}(Liste1) \Rightarrow Liste$

Im Winkelmodus Bogenmaß und Komplex-Formatmodus "kartesisch":

$$\frac{\text{sech}^{-1}(1) \qquad \qquad 0}{\text{sech}^{-1}(\left\{1,-2,2.1\right\})} \\ \left\{0,2.0944 \cdot i,8.\epsilon - 15 + 1.07448 \cdot i\right\}$$

sech-1() (Arkussekans hyperbolicus)

Gibt den inversen hyperbolischen Sekans von Wert1 oder eine Liste der inversen hyperbolischen Sekans aller Elemente in Listel zurück.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arcsech (...) eintippen.

Send Hub-Menü

Send exprOrString1[, exprOrString2] ...

Programmierbefehl: Sendet einen oder mehrere TI-Innovator™ Hub Befehle an den verbundenen Hub.

exprOrString muss ein gültiger TI-Innovator™ Hub Befehl sein. Normalerweise enthält exprOrString einen Befehl "SET ..." zum Steuern eines Geräts oder einen Befehl "READ ..." zum Anfordern von Daten.

Die Argumente werden hintereinander an den Hub gesendet.

Hinweis: Sie können den BefehlSend in einem benutzerdefinierten Programm, aber nicht in einer Funktion verwenden.

Hinweis: Siehe auch Get (Seite 66), GetStr (Seite 73) und eval() (Seite 52).

Beispiel: Schalten Sie das blaue Element der integrierten RGB LED 0,5 Sekunden lang ein.

Beispiel: Fordern Sie den aktuellen Wert des integrierten Lichtpegelsensors des Hub an. Ein Befehl Get ruft den Wert ab und weist ihn der Variablen lightval zu.

Send "READ BRIGHTNESS"	Done
Get lightval	Done
lightval	0.347922

Beispiel: Senden Sie eine berechnete Frequenz an den integrierten Lautsprecher des Hub. Verwenden Sie die spezielle Variable iostr.SendAns. um den Hub-Befehl mit dem ausgewerteten Ausdruck anzuzeigen.

seq(Ausdr, Var, Von, Bis[, Schritt])⇒Liste

Erhöht Var in durch Schritt festgelegten Stufen von Von bis Bis, wertet Ausdr aus und gibt die Ergebnisse als Liste zurück. Der ursprüngliche Inhalt von Var ist nach Beendigung von seq() weiterhin vorhanden.

Der Vorgabewert für Schritt ist 1.

$seq(n^2,n,1,6)$	{1,4,9,16,25,36}
$\overline{\operatorname{seq}\left(\frac{1}{n}, n, 1, 10, 2\right)}$	$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}\right\}$
$\overline{\operatorname{sum}\left(\operatorname{seq}\left(\frac{1}{n^2},n,1,10,1\right)\right)}$	1968329 1270080

Hinweis: Erzwingen eines Näherungsergebnisses,

Handheld: Drücken Sie ctrl enter.
Windows®: Drücken Sie Strg+Eingabetaste.
Macintosh®: Drücken #+Eingabetaste.

iPad®: Halten Sie die Eingabetaste gedrückt und wählen Sie ≈ aus.

$$\operatorname{sum}\left(\operatorname{seq}\left(\frac{1}{n^2}, n, 1, 10, 1\right)\right)$$
 1.54977

seqGen()

seqGen(Ausdr, Var, abhVar, {Var0, VarMax}[, ListeAnfTerme [, VarSchritt [, ObergrWert]]]) ⇒Liste

Generiert eine Term-Liste für die Folge abhVar(Var)=Ausdr wie folgt: Erhöht die unabhängige Variable Var von Var0 bis VarMax um VarSchritt, wertet abhVar(Var) für die entsprechenden Werte von Var mithilfe der Formel Ausdr und der ListeAnfTerme aus und gibt die Ergebnisse als Liste zurück.

seqGen(SystemListeOderAusdr, Var, ListeAbhVar, {Var0, VarMax} [, MatrixAnfTerme [, VarSchritt [, ObergrWert]]]) ⇒Matrix

Katalog > 🗊

Generieren Sie die ersten 5 Terme der Folge u (n) = $u(n-1)^2/2$ mit u(1)=2 und VarSchritt=1.

$$\frac{\left(\underline{u(n-1)}\right)^{2}}{n}, n, u, \{1,5\}, \{2\}\right) \\
\left\{2, 2, \frac{4}{3}, \frac{4}{9}, \frac{16}{405}\right\}$$

Beispiel mit Var0=2:

System zweiter Folgen:

Generiert eine Term-Matrix für ein System (oder eine Liste) von Folgen ListeAbhVar (*Var*)=*SvstemListeOderAusdr* wie folgt: Erhöht die unabhängige Variable Var von Var0 bis VarMax um VarSchritt. wertet *ListeAbhVar(Var)* für die entsprechenden Werte von Var mithilfe der Formel SystemListeOderAusdr und der MatrixAnfTerme aus und gibt die Ergebnisse als Matrix zurück.

Der ursprüngliche Inhalt von Var ist nach Beendigung von seqGen() weiterhin vorhanden.

Der Standardwert für VarSchritt ist 1.

$$\operatorname{seqGen} \left\{ \begin{cases} \frac{1}{n}, \frac{u2(n-1)}{2} + u1(n-1) \\ \end{cases}, n, \{u1,u2\}, \{1,5\} \begin{bmatrix} - \\ - \end{bmatrix} \right\}$$

$$\left[1 \quad \frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4} \quad \frac{1}{5} \right]$$

$$\left[2 \quad 2 \quad \frac{3}{2} \quad \frac{13}{12} \quad \frac{19}{24} \right]$$

Hinweis: Die Lücke () in der oben aufgeführten Anfangsterm-Matrix zeigt an, dass der Anfangsterm für u1(n) mit der expliziten Folge-Formel u1(n)=1/n berechnet wird.

segn()

seqn(Ausdr(u, n [, ListeAnfTerme[,nMax [, ObergrWert]]])⇒Liste

Generiert eine Term-Liste für eine Folge u(n)=Ausdr(u,n) wie folgt: Erhöht n von 1 bis nMax um 1, wertet u(n) für die entsprechenden Werte von n mithilfe der Formel Ausdr(u, n) und ListeAnfTerme aus und gibt die Ergebnisse als Liste zurück.

seqn(Ausdr(n [, nMax [,*ObergrWert*]]**)**⇒*Liste*

Generiert eine Term-Liste für eine nichtrekursive Folge u(n)=Ausdr(n) wie folgt: Erhöht n von 1 bis nMax um 1, wertet u(n) für die entsprechenden Werte von *n* mithilfe der Formel *Ausdr* (n) aus und gibt die Ergebnisse als Liste zurück.

Wenn *nMax* fehlt, wird *nMax* auf 2500 gesetzt

Wenn nMax=0, wird nMax auf 2500 gesetzt

Hinweis: seqn() gibt seqGen() mit $n\theta$ =1 und nSchritt = 1 an

Katalog > 🕮

Generieren Sie die ersten 6 Terme der Folge u (n) = u(n-1)/2 mit u(1)=2.

seqn
$$\left(\frac{1}{n^2}, 6\right)$$
 $\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \frac{1}{36}\right\}$

setMode Katalog > 13

setMode(ModusNameGanzzahl, GanzzahlFestlegen) $\Rightarrow Ganzzahl$

setMode(*Liste***)** \Rightarrow *Liste mit ganzen Zahlen*

Nur gültig innerhalb einer Funktion oder eines Programms.

setMode(ModusNameGanzzahl, GanzzahlFestlegen) schaltet den Modus ModusNameGanzzahl vorübergehend in GanzzahlFestlegen und gibt eine ganze Zahl entsprechend der ursprünglichen Einstellung dieses Modus zurück. Die Änderung ist auf die Dauer der Ausführung des Programms / der Funktion begrenzt.

ModusNameGanzzahl gibt an, welchen Modus Sie einstellen möchten. Hierbei muss es sich um eine der Modus-Ganzzahlen aus der nachstehenden Tabelle handeln.

GanzzahlFestlegen gibt die neue Einstellung für den Modus an. Für den Modus, den Sie festlegen, müssen Sie eine der in der nachstehenden Tabelle aufgeführten Einstellungs-Ganzzahlen verwenden.

setMode(Liste) dient zum Ändern mehrerer Einstellungen. Liste enthält Paare von Modus- und Einstellungs-Ganzzahlen. setMode(Liste) gibt eine ähnliche Liste zurück, deren Ganzzahlen-Paare die ursprünglichen Modi und Einstellungen angeben.

Wenn Sie alle Moduseinstellungen mit getMode(0) → var gespeichert haben, können Sie setMode(var) verwenden, um diese Einstellungen wiederherzustellen, bis die Funktion oder das Programm beendet wird. Siehe getMode(), Seite 72.

Zeigen Sie den Näherungswert von π an, indem Sie die Standardeinstellung für Zahlen anzeigen (Display Digits) verwenden, und zeigen Sie dann π mit einer Einstellung von Fix 2 an. Kontrollieren Sie, dass der Standardwert nach Beendigung des Programms wiederhergestellt wird.

Define prog1()=	=Prgm	Done
	Disp π	
	setMode(1,16)	
	Disp π	
	EndPrgm	
prog1()		
		3.14159
		3.14
		Done

setMode Katalog > 🕎

Hinweis: Die aktuellen Moduseinstellungen werden an aufgerufene Subroutinen weitergegeben. Wenn eine der Subroutinen eine Moduseinstellung ändert, geht diese Modusänderung verloren, wenn die Steuerung zur aufrufenden Routine zurückkehrt.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Modus	Modus	
Name	Ganzzahl	Einstellen von Ganzzahlen
Angezeigte Ziffern	1	1=Fließ, 2=Fließ 1, 3=Fließ 2, 4=Fließ 3, 5=Fließ 4, 6=Fließ 5, 7=Fließ 6, 8=Fließ 7, 9=Fließ 8, 10=Fließ 9, 11=Fließ 10, 12=Fließ 11, 13=Fließ 12, 14=Fix 0, 15=Fix 1, 16=Fix 2, 17=Fix 3, 18=Fix 4, 19=Fix 5, 20=Fix 6, 21=Fix 7, 22=Fix 8, 23=Fix 9, 24=Fix 10, 25=Fix 11, 26=Fix 12
Winkel	2	1=Bogenmaß, 2=Grad, 3=Neugrad
Exponentialformat	3	1=Normal, 2=Wissenschaftlich, 3=Technisch
Reell oder komplex	4	1=Reell, 2=Kartesisch, 3=Polar
Auto oder Approx.	5	1=Auto, 2=Approximiert
Vektorformat	6	1=Kartesisch, 2=Zylindrisch, 3=Sphärisch
Basis	7	1=Dezimal, 2=Hex, 3=Binär

shift() (Verschieben)		Katalog > 🕡
shift(Ganzzahl1	Im Bin-Modus:	
[,#Verschiebungen]) ⇒Ganzzahl	shift(0b1111010110000110101)	
		0b111101011000011010
	shift(256,1)	0b1000000000

Im Hex-Modus:

shift() (Verschieben)

Katalog > 🕮

Verschiebt die Bits in einer binären ganzen Zahl. *Ganzzahl1* kann mit jeder Basis eingegeben werden und wird automatisch in eine 64-Bit-Dualform konvertiert. Ist der Absolutwert von Ganzzahl1 für diese Form zu groß, wird eine symmetrische Modulo-Operation ausgeführt, um sie in den erforderlichen Bereich zu bringen. Weitere Informationen finden Sie unter ▶Base2. Seite 17.

Ist #Verschiebungen positiv, erfolgt die Verschiebung nach links, ist #Verschiebungen negativ, erfolgt die Verschiebung nach rechts. Vorgabe ist -1 (ein Bit nach rechts verschieben).

In einer Rechtsverschiebung wird das ganz rechts stehende Bit abgeschnitten und als ganz links stehendes Bit eine 0 oder 1 eingesetzt. Bei einer Linksverschiebung wird das Bit ganz links abgeschnitten und 0 als letztes Bit rechts eingesetzt.

Beispielsweise in einer Rechtsverschiebung:

Alle Bits werden nach rechts verschoben.

0b0000000000000111101011000011010

Setzt 0 ein, wenn Bit ganz links 0 ist, und 1, wenn Bit ganz links 1 ist.

Es ergibt sich:

0b0000000000000111101011000011010

Das Ergebnis wird gemäß dem jeweiligen Basis-Modus angezeigt. Führende Nullen werden nicht angezeigt.

 $shift(Liste1 [, #Verschiebungen]) \Rightarrow Liste$

Gibt eine um #Verschiebungen Elemente nach rechts oder links verschobene Kopie von Listel zurück. Verändert Listel nicht.

shift(0h78E)	0h3C7
shift(0h78E,-2)	0h1E3
shift(0h78E,2)	0h1E38

Wichtig: Geben Sie eine Dual- oder Hexadezimalzahl stets mit dem Präfix Ob bzw. Oh ein (Null. nicht der Buchstabe O).

Im Dec-Modus:

$shift(\{1,2,3,4\})$	$\{undef,1,2,3\}$
shift({1,2,3,4},-2)	$\{$ undef,undef,1,2 $\}$
shift({1,2,3,4},2)	${3,4,undef,undef}$

Ist #Verschiebungen positiv, erfolgt die Verschiebung nach links. ist #Verschiebungen negativ, erfolgt die Verschiebung nach rechts. Vorgabe ist -1 (ein Element nach rechts verschieben).

Dadurch eingeführte neue Elemente am Anfang bzw. am Ende von *Liste* werden auf "undef" gesetzt.

shift(String1 [,#Verschiebungen])⇒String

Gibt eine um #Verschiebungen Zeichen nach rechts oder links verschobene Kopie von *Liste1* zurück. Verändert *String1* nicht.

Ist #Verschiebungen positiv, erfolgt die Verschiebung nach links. ist #Verschiebungen negativ, erfolgt die Verschiebung nach rechts. Vorgabe ist -1 (ein Zeichen nach rechts verschieben).

Dadurch eingeführte neue Zeichen am Anfang bzw. am Ende von String werden auf ein Leerzeichen gesetzt.

shift("abcd")	" abc"
shift("abcd",-2)	" ab"
shift("abcd",1)	"bcd "

sign() (Zeichen) Katalog > 🗐

sign(-3.2) sign({2,3,4,-5})

 $sign(Wert1) \Rightarrow Wert$

 $sign(Liste1) \Rightarrow Liste$

 $sign(Matrix 1) \Rightarrow Matrix$

Gibt für reelle und komplexe Wert1 Wert1 / abs(Wert1) zurück, wenn Wert1 ≠ O.

Gibt 1 zurück, wenn Wert1 positiv ist.

Gibt -1 zurück, wenn Wert1 negativ ist.

sign(0) gibt ±1 zurück, wenn als Komplex-Formatmodus Reell eingestellt ist; anderenfalls gibt es sich selbst zurück.

sign(0) stellt im komplexen Bereich den Finheitskreis dar.

Gibt für jedes Element einer Liste bzw. Matrix das Vorzeichen zurück.

Bei Komplex-Formatmodus Reell:

 $\{1,1,1,-1\}$

simult() (Gleichungssystem)

simult(KoeffMatrix, KonstVektor[, Tol])⇒Matrix

Ergibt einen Spaltenvektor, der die Lösungen für ein lineares Gleichungssystem enthält.

Hinweis: Siehe auch linSolve(), Seite 92.

KoeffMatrix muss eine quadratische Matrix sein, die die Koeffizienten der Gleichung enthält.

KonstVektor muss die gleiche Zeilenanzahl (gleiche Dimension) besitzen wie KoeffMatrix und die Konstanten enthalten.

Sie haben die Option, dass jedes Matrixelement als Null behandelt wird, wenn dessen absoluter Wert geringer als Tol ist. Diese Toleranz wird nur dann verwendet, wenn die Matrix Fließkommaelemente aufweist und keinerlei symbolische Variablen ohne zugewiesene Werte enthält. Anderenfalls wird Tol ignoriert.

- Wenn Sie den Modus Auto oder Näherung auf Approximiert einstellen, werden Berechnungen in Fließkomma-Arithmetik durchgeführt.
- Wird Tol weggelassen oder nicht verwendet, so wird die Standardtoleranz folgendermaßen berechnet:
 5E-14 ·max(dim(KoeffMatrix)) ·rowNorm(KoeffMatrix)

simult(KoeffMatrix, KonstMatrix[, Tol])⇒Matrix

Löst mehrere lineare Gleichungssysteme, die alle dieselben Gleichungskoeffizienten, aber unterschiedliche Konstanten haben. Auflösen nach x und y:

$$x + 2y = 1$$

$$3x + 4y = -1$$

$$\operatorname{simult}\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

Die Lösung ist x=-3 und y=2.

Auflösen:

$$ax + by = 1$$

$$cx + dy = 2$$

$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow matx1 $	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
$simult \binom{matx1}{2}$	$\begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}$

Auflösen:

$$x + 2y = 1$$

$$3x + 4y = -1$$

$$x + 2y = 2$$

$$3x + 4y = -3$$

simult() (Gleichungssystem)

Katalog > 🕮

Jede Spalte in *KonstMatrix* muss die Konstanten für ein Gleichungssystem enthalten. Jede Spalte in der sich ergebenden Matrix enthält die Lösung für das entsprechende System.

simult 1	2], 1	2	-3	-7
	4][-1	-3∬	2	$\frac{9}{2}$

Für das erste System ist x=-3 und y=2. Für das zweite System ist x=-7 und y=9/2.

sin() (Sinus)

trig Taste

 $sin(Wert1) \Rightarrow Wert$

 $sin(Liste1) \Rightarrow Liste$

sin(Wert1) gibt den Sinus des Arguments zurück.

sin(Liste1) gibt eine Liste zurück, die für jedes Element von Listel den Sinus enthält.

Hinweis: Das Argument wird entsprechend dem aktuellen Winkelmodus als Winkel in Grad. Neugrad oder Bogenmaß interpretiert. Sie können °,G oder ^r benutzen, um die Winkelmoduseinstellung temporär zu ändern.

 $sin(Ouadratmatrix 1) \Rightarrow Ouadratmatrix$

Gibt den Matrix-Sinus von *Quadratmatrix1* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des Sinus iedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Im Grad-Modus:

/(±))	
sin(45)	0.707107
$\sin(\{0,60,90\})$	{00.866025,1.}

Im Neugrad-Modus:

$\sin(50)$ 0.707107

Im Bogenmaß-Modus:

$\sin\left(\frac{\pi}{4}\right)$	0.707107
sin(45°)	0.707107

Im Bogenmaß-Modus:

$$\sin \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.9424 & -0.04542 & -0.031999 \\ -0.045492 & 0.949254 & -0.020274 \\ -0.048739 & -0.00523 & 0.961051 \end{bmatrix}$$

sin-1() (Arkussinus)

trig Taste

 $sin^{-1}(Wert1) \Rightarrow Wert$

Im Grad-Modus:

sin⁻¹() (Arkussinus)

$$sin^{-1}(Liste1) \Rightarrow Liste$$

Sinus zurück.

sin¹(1) 90.

sin-1(Wert1) gibt den Winkel, dessen Sinus Wert1 ist, zurück.

sin-1(Liste1) gibt in Form einer Liste für jedes Element aus Liste1 den inversen

Hinweis: Das Ergebnis wird gemäß der aktuellen Winkelmoduseinstellung in Grad, in Neugrad oder im Bogenmaß zurückgegeben.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arcsin (...) eintippen.

 $sin^{-1}(Quadratmatrix 1) \Rightarrow Quadratmatrix$

Gibt den inversen Matrix-Sinus von Quadratmatrix I zurück. Dies ist nicht gleichbedeutend mit der Berechnung des inversen Sinus jedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix I muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Im Neugrad-Modus:

sin⁻¹(1) 100.

Im Bogenmaß-Modus:

 $\sin^{-1}(\{0,0.2,0.5\})$ {0.,0.201358,0.523599}

Im Winkelmodus Bogenmaß und Komplex-Formatmodus "kartesisch":

$$\begin{array}{l} \sin^{4} \begin{pmatrix} 1 & 5 \\ 4 & 2 \end{pmatrix} \\ \begin{bmatrix} -0.174533 - 0.12198 \cdot \boldsymbol{i} & 1.74533 - 2.35591 \cdot \boldsymbol{i} \\ 1.39626 - 1.88473 \cdot \boldsymbol{i} & 0.174533 - 0.593162 \cdot \boldsymbol{i} \end{bmatrix} \end{array}$$

sinh() (Sinus hyperbolicus)

Katalog > [3]

{0,1.50946,10.0179}

 $sinh(Wert1) \Rightarrow Wert$

 $sinh(Liste1) \Rightarrow Liste$

sinh (*Wert1*) gibt den Sinus hyperbolicus des Arguments zurück.

sinh (*Listel*) gibt in Form einer Liste für jedes Element aus *Listel* den Sinus hyperbolicus zurück.

 $sinh(Quadratmatrix1) \Rightarrow Quadratmatrix$

Im Bogenmaß-Modus:

sinh(1.2)

 $sinh(\{0,1.2,3.\})$

sinh() (Sinus hyperbolicus)

Katalog > 🕮

Gibt den Matrix-Sinus hyperbolicus von Ouadratmatrix1 zurück. Dies ist nicht gleichbedeutend mit der Berechnung des Sinus hyperbolicus iedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

sinh	1	5	3			
Sinn	4	2	1			
- \	[6	-2				_
				360.954	305.708	239.604 193.564
				352.912	233.495	193.564
				298.632	154.599	140.251

sinh-1() (Arkussinus hyperbolicus)

Katalog > 🕮

0

 $sinh^{-1}(Wert1) \Rightarrow Wert$

 $sinh^{-1}(Liste1) \Rightarrow Liste$

sinh⁻¹(Wert1) gibt den inversen Sinus hyperbolicus des Arguments zurück.

sinh⁻¹(*Liste 1*) gibt in Form einer Liste für jedes Element aus Liste 1 den inversen Sinus hyperbolicus zurück.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arcsinh (...) eintippen.

sinh⁻¹

 $(Quadratmatrix 1) \Rightarrow Quadratmatrix$

Gibt den inversen Matrix-Sinus hyperbolicus von *Ouadratmatrix1* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des inversen Sinus hyperbolicus jedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

sinh-1({0,2.1,3})	$\{0,1.48748,1.81845\}$

Im Bogenmaß-Modus:

sinh-1(0)

$$sinh^{-1} \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix} \\
= \begin{bmatrix} 0.041751 & 2.15557 & 1.1582 \\ 1.46382 & 0.926568 & 0.112557 \\ 2.75079 & -1.5283 & 0.57268 \end{bmatrix}$$

Katalog > 🕮 SinReg

SinReg X, Y [, [Iterationen], [Periode] [,Kategorie, Mit]]

Berechnet die sinusförmige Regression auf Listen X und Y. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat.results gespeichert. (Seite 166.)

Alle Listen außer *Mit* müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

Iterationen ist ein Wert, der angibt, wie viele Lösungsversuche (1 bis 16) maximal unternommen werden. Bei Auslassung wird 8 verwendet. Größere Werte führen in der Regel zu höherer Genauigkeit, aber auch zu längeren Ausführungszeiten, und umgekehrt.

Periode gibt eine geschätzte Periode an. Bei Auslassung sollten die Werte in X sequentiell angeordnet und die Differenzen zwischen ihnen gleich sein. Wenn Sie *Periode* iedoch angeben, können die Differenzen zwischen den einzelnen x-Werten ungleich sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente. deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Die Ausgabe von SinReg erfolgt unabhängig von der Winkelmoduseinstellung immer im Bogenmaß (rad).

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.RegEqn	Regressionsgleichung: a ·sin(bx+c)+d
stat.a, stat.b, stat.c, stat.d	Regressionskoeffizienten
stat.Resid	Residuen von der Regression

Ausgabevariable	Beschreibung
stat.XReg	Liste der Datenpunkte in der modifizierten X - $Liste$, die in der Regression mit den Beschränkungen für $H\ddot{a}uf$, $Kategorieliste$ und Mit - $Kategorien$ $verwendet wurde$
stat.YReg	Liste der Datenpunkte in der modifizierten <i>Y-Liste</i> , die schließlich in der Regression mit den Beschränkungen für <i>Häuf</i> , <i>Kategorieliste</i> und <i>Mit-Kategorien verwendet wurde</i>
stat.FreqReg	Liste der Häufigkeiten für stat.XReg und stat.YReg

SortA (In aufsteigender Reihenfolge sortieren)		Katalog > 🔃
SortA Liste1[, Liste2] [, Liste3]	$\{2,1,4,3\} \rightarrow list1$	{2,1,4,3}
SortA Vektor1[, Vektor2] [, Vektor3]	SortA list1	Done [1224]
Sortiert die Elemente des ersten Arguments in aufsteigender Reihenfolge.	$\frac{list1}{\left\{4,3,2,1\right\} \to list2}$	$\frac{\{1,2,3,4\}}{\{4,3,2,1\}}$
Aiguments in austeigender Kememoige.	SortA list2,list1	Done
Bei Angabe von mehr als einem	list2	{1,2,3,4}
Argument werden die Elemente der zusätzlichen Argumente so sortiert, dass ihre neue Position mit der neuen Position der Elemente des ersten Arguments übereinstimmt.	list1	{4,3,2,1}
Alle Argumente müssen Listen- oder Vektornamen sein. Alle Argumente müssen die gleiche Dimension besitzen.		
Leere (ungültige) Elemente im ersten Argument werden nach unten verschoben. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).		

SortD (In absteigender Reihenfolge sortieren)		Katalog > 🗐
SortD Liste1[, Liste2] [, Liste3]	$\{2,1,4,3\} \rightarrow list1$	{2,1,4,3}
SortD Vektor1[,Vektor2] [,Vektor3]	$\{1,2,3,4\} \rightarrow list2$	$\{1,2,3,4\}$
	SortD list1, list2	Done
Identisch mit SortA mit dem Unterschied, dass SortD die Elemente in	list1	${4,3,2,1}$
absteigender Reihenfolge sortiert.	list2	${3,4,1,2}$

SortD (In absteigender Reihenfolge sortieren)

Katalog > 🗐

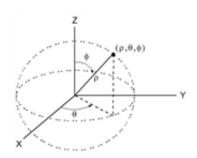
Leere (ungültige) Elemente im ersten Argument werden nach unten verschoben. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

▶Sphere (Kugelkoordinaten)

Katalog > 🗐

Vektor ▶Sphere

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @>Sphere eintippen.


Zeigt den Zeilen- oder Spaltenvektor in Kugelkoordinaten $[\rho \angle \theta \angle \phi]$ an.

Vektor muss die Dimension 3 besitzen und kann ein Zeilen- oder ein Spaltenvektor sein.

Hinweis: ▶Sphere ist eine Anzeigeformatanweisung, keine Konvertierungsfunktion. Sie können sie nur am Ende einer Eingabezeile benutzen. **Hinweis:** Erzwingen eines Näherungsergebnisses,

Handheld: Drücken Sie ctrl enter.
Windows®: Drücken Sie Strg+Eingabetaste.
Macintosh®: Drücken #+Eingabetaste.
iPad®: Halten Sie die Eingabetaste gedrückt
und wählen Sie aus.

$$\left[2 \ \angle \frac{\pi}{4} \ 3\right] \triangleright \text{Sphere}$$
 [3.60555 $\angle 0.785398 \ \angle 0.588003$]

sqrt() (Quadratwurzel)

Katalog > 🗐

sqrt(Wert1)⇒Wert

sqrt(Liste1)⇒Liste

Gibt die Quadratwurzel des Arguments zurück.

$\sqrt{4}$	2
$\sqrt{\{9,2,4\}}$	{3,1.41421,2}

sqrt() (Quadratwurzel)

Bei einer Liste wird die Quadratwurzel für iedes Element von Listel zurückgegeben.

Hinweis: Siehe auch Vorlage Quadratwurzel, Seite 1.

stat.results

Katalog > 🔯

stat.results

Zeigt Ergebnisse einer statistischen Berechnung an.

Die Ergebnisse werden als Satz von Namen-Wert-Paaren angezeigt. Die angezeigten Namen hängen von der zuletzt ausgewerteten Statistikfunktion oder dem letzten Befehl ab.

Sie können einen Namen oder einen Wert kopieren und ihn an anderen Positionen einfügen.

Hinweis: Definieren Sie nach Möglichkeit keine Variablen, die dieselben Namen haben wie die für die statistische Analyse verwendeten Variablen. In einigen Fällen könnte ein Fehler auftreten. Namen von Variablen, die für die statistische Analyse verwendet werden, sind in der Tabelle unten aufgelistet.

$xlist:=\{1,2,3,4,5\}$	{1,2,3,4,5}
$vlist:=\{4,8,11,14,17\}$	{4,8,11,14,17}

LinRegMx xlist,ylist,1: stat.results

"Title"	"Linear Regression (mx+b)"
"RegEqn"	"m*x+b"
"m"	3.2
"b"	1.2
"r² "	0.996109
"r"	0.998053
"Resid"	"{}"

stat.values	"Linear Regression (mx+b)"
	"m*x+b"
	3.2
	1.2
	0.996109
	0.998053
	"{-0.4,0.4,0.2,0.,-0.2}"

stat.a	stat.dfDenom	stat.MedianY	stat.Q3X	stat.SSBlock
stat.AdjR²	stat.dfBlock	stat.MEPred	stat.Q3Y	stat.SSCol
stat.b	stat.dfCol	stat.MinX	stat.r	stat.SSX
stat.b0	stat.dfError	stat.MinY	stat.r ²	stat.SSY
stat.b1	stat.dfInteract	stat.MS	stat.RegEqn	stat.SSError
stat.b2	stat.dfReg	stat.MSBlock	stat.Resid	stat.SSInteract
stat.b3	stat.dfNumer	stat.MSCol	stat. Resid Trans	stat.SSReg
stat.b4	stat.dfRow	stat.MSError	stat.σx	stat.SSRow
stat.b5	stat.DW	stat.MSInteract	stat.σy	stat.tList
stat.b6	stat.e	stat.MSReg	stat.σx1	stat. Upper Pred
stat.b7	stat.ExpMatrix	stat.MSRow	stat.σx2	stat.UpperVal
stat.b8	stat.F	stat.n	$stat.\Sigma x$	stat. \overline{x}

stat.b9	stat.FBlock	Stat. $\hat{\pmb{p}}$	$stat.\Sigma x^{2}$	stat. $\overline{x}1$
stat.b10	stat.Fcol	stat. p ̂ 1	$stat.\Sigmaxy$	stat. \overline{x} 2
stat.bList	stat.FInteract	stat. p ̂ 2	$stat.\Sigmay$	$stat.\overline{x}Diff$
stat.χ²	stat.FreqReg	stat. $\hat{\pmb{p}}$ Diff	$stat.\Sigma y^{z}$	stat.XList
stat.c	stat.Frow	stat.PList	stat.s	stat.XReg
stat.CLower	stat.Leverage	stat.PVal	stat.SE	stat.XVal
stat.CLowerList	stat.LowerPred	stat.PValBlock	stat.SEList	stat.XValList
stat.CompList	stat.LowerVal	stat.PValCol	stat.SEPred	stat. y
stat.CompMatrix	stat.m	stat.PValInteract	stat.sResid	stat. ŷ
stat.CookDist	stat.MaxX	stat.PValRow	stat.SEslope	stat. ŷ List
stat.CUpper	stat.MaxY	stat.Q1X	stat.sp	stat.YReg
stat.CUpperList	stat.ME	stat.Q1Y	stat.SS	stat.Theg
stat.d	stat.MedianX			

Hinweis: Immer, wenn die Applikation 'Lists & Spreadsheet' statistische Ergebnisse berechnet, kopiert sie die Gruppenvariablen "stat." in eine "stat#."-Gruppe, wobei # eine automatisch inkrementierte Zahl ist. Damit können Sie vorherige Ergebnisse beibehalten, während mehrere Berechnungen ausgeführt werden.

stat.values Katalog > 🕮

stat.values

Siehe stat.results.

Zeigt eine Matrix der Werte an, die für die zuletzt ausgewertete Statistikfunktion oder den letzten Befehl berechnet wurden.

Im Gegensatz zu stat.results lässt stat.values die den Werten zugeordneten Namen aus.

Sie können einen Wert kopieren und ihn an anderen Positionen einfügen.

stDevPop() (Populations-Standardabweichung)

Katalog > 🕮

stDevPop(Liste[,

Häufigkeitsliste])⇒Ausdruck

Ergibt die Populations-Standardabweichung der Elemente in Liste.

Jedes *Häufigkeitsliste*-Element gewichtet die Elemente von Liste in der gegebenen Reihenfolge entsprechend.

Im Bogenmaß- und automatischen Modus:

stDevPop({1,2,5,-6,3,-2})	3.59398
stDevPop({1.3,2.5,-6.4},{3,2,5})	4.11107

stDevPop() (Populations-Standardabweichung)

Katalog > 🕮

Katalog > 🕮

Hinweis: Liste muss mindestens zwei Elemente haben. Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

stDevPop(Matrix 1),Häufigkeitsmatrix])⇒Matrix

Ergibt einen Zeilenvektor der Populations-Standardabweichungen der Spalten in *Matrix1*.

Jedes Häufigkeitsmatrix-Element gewichtet die Elemente von Matrix1 in der gegebenen Reihenfolge entsprechend.

Hinweis: *Matrix1* muss mindestens zwei Zeilen haben, Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

$$stDevPop \begin{bmatrix} 1 & 2 & 5 \\ -3 & 0 & 1 \\ 5 & 7 & 3 \end{bmatrix} \\ = \begin{bmatrix} 3.26599 & 2.94392 & 1.63299 \end{bmatrix}$$

$$stDevPop \begin{bmatrix} -1.2 & 5.3 \\ 2.5 & 7.3 \\ 6 & -4 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 3 & 3 \\ 1 & 7 \end{bmatrix} \\ = \begin{bmatrix} 2.52608 & 5.21506 \end{bmatrix}$$

stDevSamp() (Stichproben-Standardabweichung)

stDevSamp(Liste[, Häufigkeitsliste])⇒Ausdruck

Ergibt die Stichproben-Standardabweichung der Elemente in Liste.

Jedes Häufigkeitsliste-Element gewichtet die Elemente von Liste in der gegebenen Reihenfolge entsprechend.

Hinweis: *Liste* muss mindestens zwei Elemente haben. Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

stDevSamp() (Stichproben-Standardabweichung)

Katalog > 🗐

stDevSamp(Matrix1[, Häufigkeitsmatrix])⇒Matrix

Ergibt einen Zeilenvektor der Stichproben-Standardabweichungen der Spalten in *Matrix1*.

Jedes *Häufigkeitsmatrix*-Element gewichtet die Elemente von *Matrix1* in der gegebenen Reihenfolge entsprechend.

Hinweis: Matrix I muss mindestens zwei Zeilen haben. Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Produkthandbuchs.

Katalog > 🗐 Stop (Stopp) Stop i = 00 Define prog1()=Prgm Programmierbefehl: Beendet das Done Programm. For i, 1, 10, 1If i=5Stop ist in Funktionen nicht zulässig. Stop EndFor Hinweis zum Eingeben des Beispiels: EndPrgm Anweisungen für die Eingabe von prog1() mehrzeiligen Programm- und Done Funktionsdefinitionen finden Sie im 5 Abschnitt "Calculator" des

Store (Speichern) Siehe → (speichern), Seite 221.

string() (String)		Katalog > 💱
$string(Ausdr) \Rightarrow String$	string(1.2345)	"1.2345"
Vereinfacht <i>Ausdr</i> und gibt das Ergebnis	string(1+2)	"3"
als Zeichenkette zurück.		

Katalog > 🗐 subMat() (Untermatrix) subMat(Matrix1[, vonZei] [, vonSpl] [, bisZei] [, bisSpl]) $\Rightarrow Matrix$ $\rightarrow m1$ 4 5 6 4 5 6 7 8 9 7 8 9] Gibt die angegebene Untermatrix von 4 5 subMat(m1,2,1,3,2)Matrix1 zurück. 7 8 Vorgaben: vonZei=1, vonSpl=1, subMat(m1,2,2)

Summe (Sigma)

bisZei=letzte Zeile, bisSpl=letzte Spalte.

Siehe Σ (), Seite 212.

5 6

8 9

sum() (Summe)		Katalog > 🕡	
$sum(Liste[, Start[, Ende]]) \Rightarrow Ausdruck$	sum({1,2,3,4,5})	15	
Gibt die Summe der Elemente in <i>Liste</i>	$\operatorname{sum}(\{a,2\cdot a,3\cdot a\})$		
zurück.	"Error: Variable is not defined"		
Start und Ende sind optional. Sie geben	$\operatorname{sum}(\operatorname{seq}(n,n,1,10))$	55	
einen Elementebereich an.	sum({1,3,5,7,9},3)	21	
Ein ungültiges Argument erzeugt ein ungültiges Ergebnis. Leere (ungültige) Elemente in <i>Liste</i> werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).			
$sum(Matrix 1[, Start[, Ende]]) \Rightarrow Matrix$	$\operatorname{sum} \left(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \right)$	[5 7 9]	
Gibt einen Zeilenvektor zurück, der die	- T	[12 15 18]	
Summen der Elemente aus den Spalten von <i>Matrix1</i> enthält.	sum 4 5 6	[12 19 19]	
Start und Ende sind optional. Sie geben		[11 13 15]	
einen Zeilenbereich an.	$\operatorname{sum}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, 2, 3$	[11 13 13]	
Ein ungültiges Argument erzeugt ein ungültiges Ergebnis. Leere (ungültige) Elemente in <i>Matrix1</i> werden ignoriert.	<u>[7 8 9]</u>		

Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Katalog > 🕮 sumIf()

sumlf(Liste,Kriterien[, SummeListe) $\Rightarrow Wert$

Gibt die kumulierte Summe aller Elemente in *Liste* zurück, die die angegebenen Kriterien erfüllen. Optional können Sie eine Alternativliste, SummeListe, angeben, an die die Elemente zum Kumulieren weitergegeben werden sollen.

Liste kann ein Ausdruck, eine Liste oder eine Matrix sein. SummeListe muss. sofern sie verwendet wird, dieselben Dimension(en) haben wie Liste.

Kriterien können sein:

- Ein Wert, ein Ausdruck oder eine Zeichenfolge. So kumuliert beispielsweise 34 nur solche Elemente in Liste, die vereinfacht den Wert 34 ergeben.
- Ein Boolescher Ausdruck, der das Sonderzeichen? als Platzhalter für jedes Element verwendet. Beispielsweise zählt ?<10 nur solche Elemente in *Liste* zusammen, die kleiner als 10 sind.

Wenn ein Element in Liste die Kriterien erfüllt, wird das Element zur Kumulationssumme hinzugerechnet. Wenn Sie SummeListe hinzufügen, wird stattdessen das entsprechende Element aus SummeListe zur Summe hinzugerechnet.

In der Lists & Spreadsheet Applikation können Sie anstelle von Liste und SummeListe auch einen Zellenbereich verwenden.

Leere (ungültige) Elemente werden ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Hinweis: Siehe auch countIf(), Seite 33.

sumIf($\{1,2,e,3,\pi,4,5,6\},2.5<?<4.5$) sumIf({1,2,3,4},2<?<5,{10,20,30,40}) 70

system() (System)

Katalog > 📳

3 6 9

system(Wert [, Wert2 [, Wert3 [, ...]]])

Gibt ein Gleichungssystem zurück, das als Liste formatiert ist. Sie können ein Gleichungssystem auch mit Hilfe einer Vorlage erstellen.

Τ

T (Transponierte)		Katalog > 🕡
<i>Matrix1</i> T ⇒ <i>matrix</i>	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	1 4 7

Gibt die komplex konjugierte, transponierte Matrix von *Matrix 1* zurück.

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @t eintippen.

tan() (Tangens)	trig Taste
-----------------	------------

 $tan(Wert1) \Rightarrow Wert$

tan(Liste1)⇒Liste

tan(Wert1) gibt den Tangens des Arguments zurück.

tan(Liste1) gibt in Form einer Liste für jedes Element in Liste1 den Tangens zurück.

Hinweis: Das Argument wird entsprechend dem aktuellen Winkelmodus als Winkel in Grad, Neugrad oder Bogenmaß interpretiert. Sie können °, G oder ^r benutzen, um die Winkelmoduseinstellung temporär zu ändern.

Im Grad-Modus:

7 8 9

$\tan\left(\left(\frac{\pi}{4}\right)^{r}\right)$	1.
tan(45)	1.
tan({0,60,90})	{0.,1.73205,undef}

Im Neugrad-Modus:

$tan\!\left(\!\!\left(\frac{\pi}{4}\!\right)\!\!r\!\right)$	1.
tan(50)	1.
tan({0,50,100})	$\{0.,1.,$ unde $f\}$

Im Bogenmaß-Modus:

tan() (Tangens)

$\frac{1}{\tan\left(\frac{\pi}{4}\right)}$	1.
tan(45°)	1.
$\frac{1}{\tan\left\{\left\{\pi,\frac{\pi}{3},-\pi,\frac{\pi}{4}\right\}\right\}}$	{0.,1.73205,0.,1.}

$tan(Ouadratmatrix 1) \Rightarrow Ouadratmatrix$

Gibt den Matrix-Tangens von *Quadratmatrix1* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des Tangens jedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Im Bogenmaß-Modus:

$$\tan\begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -28.2912 & 26.0887 & 11.1142 \\ 12.1171 & -7.83536 & -5.48138 \\ 36.8181 & -32.8063 & -10.4594 \end{bmatrix}$$

tan-1() (Arkustangens)

trig Taste

 $tan^{-1}(Wert1) \Rightarrow Wert$

 $tan^{-1}(Liste1) \Rightarrow Liste$

tan-1(Wert1) gibt den Winkel zurück, dessen Tangens Wert1 ist.

tan-1(Liste1) gibt in Form einer Liste für jedes Element aus Liste1 den inversen Tangens zurück.

Hinweis: Das Ergebnis wird gemäß der aktuellen Winkelmoduseinstellung in Grad, in Neugrad oder im Bogenmaß zurückgegeben.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie arctan (...) eintippen.

 $tan^{-1}(Quadratmatrix1) \Rightarrow Quadratmatrix$

Im Grad-Modus:

tan-(1) 45

Im Neugrad-Modus:

tan-1(1) 50

Im Bogenmaß-Modus:

tan-'({0,0.2,0.5}) {0,0.197396,0.463648}

Im Bogenmaß-Modus:

tan-1() (Arkustangens)

Gibt den inversen Matrix-Tangens von *Quadratmatrix1* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des inversen Tangens jedes einzelnen Flements, Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Ouadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

$\begin{bmatrix} 5 & 3 \\ 2 & 1 \\ -2 & 1 \end{bmatrix}$			
-0.083658 0.748539	1.26629	0.62263	
1.68608	-1.18244	0.455126	

tanh() (Tangens hyperbolicus)

Katalog > 🕮

 $tanh(Wert1) \Rightarrow Wert$

tanh(*Liste1*)⇒*Liste*

tanh(1.2) 0.833655 $tanh(\{0,1\})$ {0.,0.761594

tanh(Wert1) gibt den Tangens hyperbolicus des Arguments zurück.

tanh(Liste1) gibt in Form einer Liste für jedes Element aus Listel den Tangens hyperbolicus zurück.

 $tanh(Quadratmatrix1) \Rightarrow Quadratmatrix$

Gibt den Matrix-Tangens hyperbolicus von *Quadratmatrix1* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des Tangens hyperbolicus iedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Im Bogenmaß-Modus:

$$\tanh\begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -0.097966 & 0.933436 & 0.425972 \\ 0.488147 & 0.538881 & -0.129382 \\ 1.28295 & -1.03425 & 0.428817 \end{bmatrix}$$

tanh-1() (Arkustangens hyperbolicus)

 $tanh^{-1}(Wert1) \Rightarrow Wert$

 $tanh^{-1}(Liste1) \Rightarrow Liste$

tanh-1(Wert1) gibt den inversen Tangens hyperbolicus des Arguments zurück.

Im Komplex-Formatmodus "kartesisch":

tanh-1(0)	0.
$\tanh^{-1}(\{1,2.1,3\})$	
{undef,0.518046-1.5708· <i>i</i> ,0.346574-1.	570

tanh-1() (Arkustangens hyperbolicus)

Katalog > 🕮

tanh⁻¹(Liste1) gibt in Form einer Liste für iedes Element aus *Liste1* den inversen Tangens hyperbolicus zurück.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie arctanh (...) eintippen.

tanh-1

 $(Ouadratmatrix 1) \Rightarrow Ouadratmatrix$

Gibt den inversen Matrix-Tangens hyperbolicus von *Quadratmatrix1* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des inversen Tangens hyperbolicus jedes einzelnen Elements. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

Im Winkelmodus Bogenmaß und Komplex-Formatmodus "kartesisch":

$$tanh^{-1}\begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

-0.099353+0.164058·i 0.267834-1.4908 -0.087596-0.725533·i 0.479679-0.94730 0.511463-2.08316·*i* -0.878563+1.7901

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

tCdf() Katalog > 🕮

tCdf

(UntGrenze,ObGrenze,FreiGrad)⇒Zahl, wenn UntGrenze und ObGrenze Zahlen sind, Liste, wenn UntGrenze und ObGrenze Listen sind

Berechnet für eine Student-t-Verteilung mit vorgegebenen Freiheitsgraden FreiGrad die Intervallwahrscheinlichkeit zwischen UntGrenze und ObGrenze.

Für $P(X \le obereGrenze)$ setzen Sie untereGrenze = -9E999.

Katalog > 🕮 Text

Text EingabeString[, FlagAnz]

Programmierbefehl: Pausiert das Programm und zeigt die Zeichenkette EingabeString in einem Dialogfeld an.

Definieren Sie ein Programm, das fünfmal anhält und jeweils eine Zufallszahl in einem Dialogfeld anzeigt.

Text Katalog > 🕮

Wenn der Benutzer OK auswählt, wird die Programmausführung fortgesetzt.

Bei dem optionalen Argument FlagAnz kann es sich um einen beliebigen Ausdruck handeln.

- Wenn FlagAnz fehlt oder den Wert 1 ergibt, wird die Textmeldung im Calculator-Protokoll angezeigt.
- Wenn FlagAnz den Wert **0** ergibt, wird die Meldung nicht im Protokoll angezeigt.

Wenn das Programm eine Eingabe vom Benutzer benötigt, verwenden Sie stattdessen Request, Seite 141, oderRequestStr, Seite 143.

Hinweis: Sie können diesen Befehl in benutzerdefinierten Programmen, aber nicht in Funktionen verwenden.

Schließen Sie in der Vorlage Prgm...EndPrgm jede Zeile mit ← ab anstatt mit enter. Auf der Computertastatur halten Sie Alt gedrückt und drücken die Eingabetaste.

Define text demo()=Prgm For i,1,5 strinfo:="Random number " & string(rand(i)) Text strinfo EndFor EndPrgm

Starten Sie das Programm: text demo()

Muster eines Dialogfelds:

Then Siehe If, Seite 76.

tinterval

Katalog > 🗐

tInterval Liste[,Häuf[,KNiv]]

(Datenlisteneingabe)

tInterval $\overline{\mathbf{x}}$, sx, n[KNiv]

(Zusammenfassende statistische Eingabe)

tInterval Katalog > 🕮

Berechnet das Konfidenzintervall t. Eine Zusammenfassung der Ergebnisse wird in der Variablen stat. results gespeichert. (Seite 166.)

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.CLower, stat.CUpper	Konfidenzintervall für den unbekannten Populationsmittelwert
stat. $\overline{\mathbf{x}}$	Stichprobenmittelwert der Datenfolge aus der zufälligen Normalverteilung
stat.ME	Fehlertoleranz
stat.df	Freiheitsgrade
stat.σx	Stichproben-Standardabweichung
stat.n	Länge der Datenfolge mit Stichprobenmittelwert

tInterval_2Samp (Zwei-Stichproben-t-Konfidenzintervall)

Katalog > 🕮

tInterval 2Samp Liste1,Liste2[,Häufigkeit1 [,Häufigkeit2[,KStufe[,Verteilt]]]]

(Datenlisteneingabe)

tinterval 2Samp $\bar{x}1$,sx1,n1, $\bar{x}2$,sx2,n2[KStufe]Verteilt]

(Zusammenfassende statistische Eingabe)

Berechnet ein t-Konfidenzintervall für zwei Stichproben. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

Verteilt=1 verteilt Varianzen: Verteilt=0 verteilt keine Varianzen.

Ausgabevariable	Beschreibung	
stat.CLower, stat.CUpper	Konfidenzintervall mit dem Konfidenzniveau der Verteilungswahrscheinlichkeit	
stat. $\overline{x}1$ - $\overline{x}2$	Stichprobenmittelwerte der Datenfolgen aus der zufälligen Normalverteilung	
stat.ME	Fehlertoleranz	
stat.df	Freiheitsgrade	
stat. \overline{x} 1, stat. \overline{x} 2	Stichprobenmittelwerte der Datenfolgen aus der zufälligen Normalverteilung	
stat.σx1, stat.σx2	Stichproben-Standardabweichungen für Liste 1 und Liste 2	
stat.n1, stat.n2	Anzahl der Stichproben in Datenfolgen	
stat.sp	Die verteilte Standardabweichung. Wird berechnet, wenn $Verteilt$ = JA.	

tPdf() Katalog > 🕎

 $tPdf(XWert,FreiGrad) \Rightarrow Zahl$, wenn XWerteine Zahl ist, *Liste*, wenn *XWert* eine Liste ist

Berechnet die

Wahrscheinlichkeitsdichtefunktion (Pdf) einer Student-t-Verteilung an einem bestimmten x-Wert für die vorgegebenen Freiheits grade FreiGrad.

trace()		Katalog > 📳
$trace(Quadratmatrix) \Rightarrow Wert$		15
Gibt die Spur (Summe aller Elemente der Hauptdiagonalen) von <i>Quadratmatrix</i>	trace 4 5 6 7 8 9	
zurück.	a := 12	12
	$\operatorname{trace}\begin{bmatrix} a & 0 \\ 1 & a \end{bmatrix}$	24

Try block1

Else block2

EndTry

Führt Block1 aus, bis ein Fehler auftritt. Wenn in *Block1* ein Fehler auftritt, wird die Programmausführung an Block2 übertragen. Die Systemvariable Fehlercode (errCode) enthält den Fehlercode, der es dem Programm ermöglicht, eine Fehlerwiederherstellung durchzuführen. Eine Liste der Fehlercodes finden Sie unter "Fehlercodes und -meldungen" (Seite 251).

Block1 und Block2 können einzelne Anweisungen oder Reihen von Anweisungen sein, die durch das Zeichen ":" voneinander getrennt sind.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Beispiel 2

Um die Befehle Versuche (Try), LöFehler (ClrErr) und ÜbgebFeh (PassErr) im Betrieb zu sehen, geben Sie das rechts gezeigte Programm eigenvals() ein. Sie starten das Programm, indem Sie ieden der folgenden Ausdrücke eingeben.

$$eigenvals \begin{bmatrix} -3\\ -41\\ 5 \end{bmatrix}, \begin{bmatrix} -1 & 2 & -3.1 \end{bmatrix}$$

Hinweis: Siehe auch LöFehler, Seite 24, und ÜbgebFeh, Seite 124.

Define prog1()=Prgm Trv z := z + 1Disp "z incremented." Disp "Sorry, z undefined." EndTry EndPrgm

Done z := 1 : prog I()z incremented. Done DelVar z:prog1() Sorry, z undefined. Done

Definiere eigenvals(a,b)=Prgm

© Programm eigenvals(A,B) zeigt die Eigenwerte von A·B an

Trv

Disp "A= ",a

Disp "B= ",b

Disp " "

Disp "Eigenwerte von A·B sind:",eigVl(a*b)

Else

If errCode=230 Then

Disp "Fehler: Produkt von A·B muss eine quadratische Matrix sein"

ClrFrr

Else

PassFrr

FndIf

EndTry

EndPrgm

tTest Katalog > 🕎

tTest μ0,Liste[,Häufigkeit[,Hypoth]]

(Datenlisteneingabe)

tTest $\mu \theta, \overline{x}, sx, n, [Hypoth]$

(Zusammenfassende statistische Eingabe)

Führt einen Hypothesen-Test für einen einzelnen, unbekannten Populationsmittelwert μ durch, wenn die Populations-Standardabweichung σ unbekannt ist. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Siehe Seite 166.)

Getestet wird H_0 : $\mu = \mu 0$ in Bezug auf eine der folgenden Alternativen:

Für H_a : $\mu < \mu 0$ setzen Sie Hypoth < 0

Für H_a : $\mu \neq \mu 0$ (Standard) setzen Sie Hypoth=0

Für H_a : $\mu > \mu 0$ setzen Sie Hypoth > 0

Ausgabevariable	Beschreibung	
stat.t	$(\overline{x} - \mu 0) / (stdev / sqrt(n))$	
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann	

Ausgabevariable	Beschreibung	
stat.df	Freiheitsgrade	
$stat.\overline{\mathbf{x}}$	Stichprobenmittelwert der Datenfolge in <i>Liste</i>	
stat.sx	Stichproben-Standardabweichung der Datenfolge	
stat.n	Stichprobenumfang	

tTest_2Samp (t-Test für zwei Stichproben)

Katalog > 🔯

tTest_2Samp Liste1,Liste2[,Häufigkeit1 [,Häufigkeit2[,Hypoth[,Verteilt]]]]

(Datenlisteneingabe)

 $\mathsf{tTest_2Samp}\ \overline{\mathsf{x}}\ l$,sxl,nl, $\overline{\mathsf{x}}\ 2$,sx2,n2[,Hypoth [,Verteilt]]

(Zusammenfassende statistische Eingabe)

Berechnet einen *t*-Test für zwei Stichproben. Eine Zusammenfassung der Ergebnisse wird in der Variable *stat.results* gespeichert. (Seite 166.)

Getestet wird H_0 : $\mu 1 = \mu 2$ in Bezug auf eine der folgenden Alternativen:

Für H_a: μ 1< μ 2 setzen Sie *Hypoth*<0

Für H_a : $\mu 1 \neq \mu 2$ (Standard) setzen Sie Hypoth=0

Für H_a: μ 1> μ 2 setzen Sie Hypoth>0

Verteilt=1 verteilt Varianzen

Verteilt=0 verteilt keine Varianzen

Ausgabevariable	Beschreibung	
stat.t	Für die Differenz der Mittelwerte berechneter Standardwert	
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann	

Ausgabevariable	Beschreibung
stat.df	Freiheitsgrade für die t-Statistik
stat.x1, stat.x2	Stichprobenmittelwerte der Datenfolgen in $Liste\ 1$ und $Liste\ 2$
stat.sx1, stat.sx2	Stichproben-Standardabweichungen der Datenfolgen in $Liste\ 1$ und $Liste\ 2$
stat.n1, stat.n2	Stichprobenumfang
stat.sp	Die verteilte Standardabweichung. Wird berechnet, wenn Verteilt=1.

tvmFV()		Katalog > 🗐
tvmFV(N,I,PV,Pmt,[PpY],[CpY],	tvmFV(120,5,0,-500,12,12)	77641.1

Finanzfunktion, die den Geld-Endwert berechnet.

[PmtAt] $\Rightarrow Wert$

Hinweis: Die in den TVM-Funktionen verwendeten Argumente werden in der Tabelle der TVM-Argumente (Seite 183) beschrieben. Siehe auch amortTbl(), Seite 7.

Katalog > 🔯 tvmI()

tvml(N,PV,Pmt,FV,[PpY],[CpY],[PmtAt] \Rightarrow Wert

tvmI(240,100000,-1000,0,12,12) 10.5241

Finanzfunktion, die den jährlichen Zinssatz berechnet.

Hinweis: Die in den TVM-Funktionen verwendeten Argumente werden in der Tabelle der TVM-Argumente (Seite 183) beschrieben. Siehe auch amortTbl(), Seite 7.

Katalog > 🔯 tvmN()

tvmN(I,PV,Pmt,FV,[PpY],[CpY], $[PmtAt]) \Rightarrow Wert$

tvmN(5,0,-500,77641,12,12) 120.

Finanzfunktion, die die Anzahl der Zahlungsperioden berechnet.

tvmN() Katalog > 🗓

Hinweis: Die in den TVM-Funktionen verwendeten Argumente werden in der Tabelle der TVM-Argumente (Seite 183) beschrieben. Siehe auch amortTbl().

Seite 7.

tvmPmt() Katalog > 💓

tvmPmt(N,I,PV,FV,[PpY],[CpY],[PmtAt]) $\Rightarrow Wert$

tvmPmt(60,4,30000,0,12,12) -552.496

Finanzfunktion, die den Betrag der einzelnen Zahlungen berechnet.

Hinweis: Die in den TVM-Funktionen verwendeten Argumente werden in der Tabelle der TVM-Argumente (Seite 183) beschrieben. Siehe auch amortTbl(), Seite 7.

tvmPV() Katalog > 🗓 🕽

tvmPV(N,I,Pmt,FV,[PpY],[CpY], [PmtAt]) $\Rightarrow Wert$

tvmPV(48,4,-500,30000,12,12) -3426.7

Finanzfunktion, die den Barwert berechnet.

Hinweis: Die in den TVM-Funktionen verwendeten Argumente werden in der Tabelle der TVM-Argumente (Seite 183) beschrieben. Siehe auch amortTbl(), Seite 7.

TVM- Argumente*	Beschreibung	Datentyp
N	Anzahl der Zahlungsperioden	reelle Zahl
I	Jahreszinssatz	reelle Zahl
PV	Barwert	reelle Zahl
Pmt	Zahlungsbetrag	reelle Zahl
FV	Endwert	reelle Zahl
PpY	Zahlungen pro Jahr, Standard=1	Ganzzahl > 0
СрҮ	Verzinsungsperioden pro Jahr, Standard=1	Ganzzahl > 0

TVM- Argumente*	Beschreibung	Datentyp
PmtAt	Zahlung fällig am Ende oder am Anfang der jeweiligen Zahlungsperiode, Standard=Ende	Ganzzahl (0=Ende, 1=Anfang)

^{*} Die Namen dieser TVM-Argumente ähneln denen der TVM-Variablen (z.B. tvm.pv und tvm.pmt), die vom Finanzlöser der Calculator Applikation verwendet werden.Die Werte oder Ergebnisse der Argumente werden jedoch von den Finanzfunktionen nicht unter den TVM-Variablen gespeichert.

TwoVar (Zwei Variable)

Katalog > 23

TwoVar X, Y[, $[H\ddot{a}uf]$ [, Kategorie, Mit]]

Berechnet die 2-Variablen-Statistik, Fine Zusammenfassung der Ergebnisse wird in der Variablen stat. results gespeichert. (Seite 166.)

Alle Listen außer Mit müssen die gleiche Dimension besitzen.

X und Y sind Listen von unabhängigen und abhängigen Variablen.

Häuf ist eine optionale Liste von Häufigkeitswerten. Jedes Element in Häuf gibt die Häufigkeit für ieden entsprechenden X- und Y-Datenpunkt an. Der Standardwert ist 1. Alle Elemente müssen Ganzzahlen ≥ 0 sein.

Kategorie ist eine Liste von Kategoriecodes in numerischer Form oder als Zeichenfolge für die entsprechenden X und Y Daten.

Mit ist eine Liste von einem oder mehreren Kategoriecodes. Nur solche Datenelemente. deren Kategoriecode in dieser Liste enthalten ist, sind in der Berechnung enthalten.

Ein leeres (ungültiges) Element in einer der Listen *X*, *Freq* oder *Kategorie* führt zu einem Fehler im entsprechenden Element aller dieser Listen. Ein leeres (ungültiges) Element in einer der Listen XI bis X20 führt zu einem Fehler im entsprechenden Element aller dieser Listen. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Ausgabevariable	Beschreibung	
stat.x̄	Mittelwert der x-Werte	
stat. x	Summe der x-Werte	
stat. x2	Summe der x2-Werte	
stat.sx	Stichproben-Standardabweichung von x	
stat. x	Populations-Standardabweichung von x	
stat.n	Anzahl der Datenpunkte	
stat. y	Mittelwert der y-Werte	
stat. y	Summe der y-Werte	
stat. y ²	Summe der y2-Werte	
stat.sy	Stichproben-Standardabweichung von y	
stat. y	Populations-Standardabweichung von y	
Stat. xy	Summe der x · y-Werte	
stat.r	Korrelationskoeffizient	
stat.MinX	Minimum der x-Werte	
stat.Q ₁ X	1. Quartil von x	
stat.MedianX	Median von x	
stat.Q ₃ X	3. Quartil von x	
stat.MaxX	Maximum der x-Werte	
stat.MinY	Minimum der y-Werte	
stat.Q ₁ Y	1. Quartil von y	
stat.MedY	Median von y	
stat.Q ₃ Y	3. Quartil von y	
stat.MaxY	Maximum der y-Werte	
stat. (x-) ²	Summe der Quadrate der Abweichungen der x-Werte vom Mittelwert	
stat. (y-) ²	Summe der Quadrate der Abweichungen der y-Werte vom Mittelwert	

unitV() (Einheitsvektor)

Katalog > 🕮

Katalog > 23

 $unitV(Vektor1) \Rightarrow Vektor$

Gibt ie nach der Form von Vektor1 entweder einen Zeilen- oder einen Spalteneinheitsvektor zurück.

Vektor1 muss eine einzeilige oder eine einspaltige Matrix sein.

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

unLock

unLock Var1 [, Var2] [, Var3] ...

unLock Var.

Entsperrt die angegebenen Variablen bzw. die Variablengruppe. Gesperrte Variablen können nicht geändert oder gelöscht werden.

Siehe Lock, Seite 96, und getLockInfo(), Seite 72.

a:=65	65
Lock a	Done
getLockInfo(a)	1
a:=75	"Error: Variable is locked."
DelVar a	"Error: Variable is locked."
Unlock a	Done
a:=75	75
DelVar a	Done

varPop({5,10,15,20,25,30})

varPop()	1	Popu	lation	svarianz

Katalog > 🗐 72.9167

varPop(Liste

[,Häufigkeitsliste])⇒Ausdruck

Ergibt die Populationsvarianz von *Liste* zurück.

Jedes Häufigkeitsliste-Element gewichtet die Elemente von Liste in der gegebenen Reihenfolge entsprechend.

Hinweis: Liste muss mindestens zwei Flemente enthalten.

varPop() (Populationsvarianz)

Wenn ein Element in einer der Listen leer (ungültig) ist, wird dieses Element ignoriert. Das entsprechende Element in der anderen Liste wird ebenfalls ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

varSamp() (Stichproben-Varianz)

Katalog > 🔯

varSamp(Liste[,

Häufigkeitsliste])⇒Ausdruck

Ergibt die Stichproben-Varianz von *Liste*.

Jedes *Häufigkeitsliste*-Element gewichtet die Elemente von Liste in der gegebenen Reihenfolge entsprechend.

Hinweis: Liste muss mindestens zwei Flemente enthalten.

Wenn ein Flement in einer der Listen leer (ungültig) ist, wird dieses Element ignoriert. Das entsprechende Element in der anderen Liste wird ebenfalls ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

varSamp(Matrix 1)Häufigkeitsmatrix])⇒Matrix

Gibt einen Zeilenvektor zurück, der die Stichproben-Varianz jeder Spalte von Matrix1 enthält.

Jedes Häufigkeitsmatrix-Element gewichtet die Elemente von Matrix1 in der gegebenen Reihenfolge entsprechend.

Wenn ein Element in einer der Matrizen leer (ungültig) ist, wird dieses Element ignoriert. Das entsprechende Element in der anderen Matrix wird ebenfalls ignoriert. Weitere Informationen zu leeren Elementen finden Sie (Seite 241).

Hinweis: Matrix 1 muss mindestens zwei Zeilen enthalten.

varSamp({1,2,5,-6,3,-2})	31
	2
$\overline{\text{varSamp}(\{1,3,5\},\{4,6,2\})}$	68
	33

Wait Katalog > ℚ3

Wait ZeitInSekunden

Setzt die Ausführung für einen Zeitraum von ZeitInSekunden aus.

Wait ist besonders nützlich bei einem Programm, das eine kurze Verzögerung benötigt, damit die angeforderten Daten verfügbar werden.

Das Argument ZeitInSekunden muss ein Ausdruck sein, der zu einem Dezimalwert im Bereich von 0 bis 100 vereinfacht wird. Der Befehl rundet diesen Wert auf die nächsten 0.1 Sekunden auf.

Zum Abbrechen eines **Wait** das gerade durchgeführt wird,

- Handheld: Halten Sie die Taste an gedrückt und drücken Sie mehrmals enter.
- Windows®: Halten Sie die Taste F12 gedrückt und drücken Sie mehrmals die Eingabetaste.
- Macintosh®: Halten Sie die Taste F5 gedrückt und drücken Sie mehrmals die Eingabetaste.
- iPad®: Die App zeigt eine Eingabeaufforderung an. Sie können weiter warten oder abbrechen.

Hinweis: Sie können den Befehl Wait in einem benutzerdefinierten Programm, aber nicht in einer Funktion verwenden.

Um 4 Sekunden zu warten:

Wait 4

Um 1/2 Sekunde zu warten:

Wait 0.5

Um 1,3 Sekunden mithilfe der Variablen *seccount* zu warten:

seccount:=1.3 Wait seccount

Dieses Beispiel schaltet eine grüne LED 0,5 Sekunden lang ein und anschließend aus.

Send "SET GREEN 1 ON" Wait 0.5 Send "SET GREEN 1 OFF"

warnCodes () Katalog > [[3]

warnCodes(Ausdr1, StatusVar)⇒Ausdruck

warnCodes(det([1.23456**E**-999]),warn)
1.23456**E**-999
warn
{10029}

Wertet den Ausdruck *Ausdr1* aus, gibt das Ergebnis zurück und speichert die Codes aller erzeugten Warnungen in der Listenvariablen *StatusVar*. Wenn keine Warnungen erzeugt werden, weist diese Funktion *StatusVar* eine leere Liste zu.

Ausdr1 kann jeder in TI-Nspire[™] oder TI-Nspire[™] CAS gültige mathematische Ausdruck sein. Ausdr1 kann kein Befehl und keine Zuweisung sein.

Status Var muss ein gültiger Variablenname sein.

Eine Liste der Warncodes und der zugehörigen Meldungen finden Sie (Seite 260).

when() (Wenn)

Katalog > 😰

when(Bedingung, wahresErgebnis [, falschesErgebnis][, unbekanntesErgebnis]) \Rightarrow Ausdruck

Gibt wahresErgebnis, falschesErgebnisoder unbekanntesErgebnis zurück, je nachdem, ob die Bedingung wahr, falsch oder unbekannt ist. Gibt die Eingabe zurück, wenn zu wenige Argumente angegeben werden.

Lassen Sie sowohl *falschesErgebnis* als auch *unbekanntesErgebnis* weg, um einen Ausdruck nur für den Bereich zu bestimmen, in dem *Bedingung* wahr ist.

Geben Sie **undef** für *falschesErgebnis* an, um einen Ausdruck zu bestimmen, der nur in einem Intervall graphisch dargestellt werden soll.

when() ist hilfreich für die Definition rekursiver Funktionen.

$$when(x<0,x+3)|x=5$$
 undef

when
$$(n > 0, n \cdot factoral(n-1), 1) \rightarrow factoral(n)$$

Done

factoral(3)

3!

6

While Bedingung

Block

EndWhile

Führt die in *Block* enthaltenen Anweisungen so lange aus, wie Bedingung wahr ist.

Block kann eine einzelne Anweisung oder eine Serie von Anweisungen sein, die durch ":" getrennt sind.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define sum_of_recip(n)=Func

sum of recip(3)

Local i,tempsum

 $1 \rightarrow i$

 $0 \rightarrow tempsum$ While $i \le n$

 $i+1 \rightarrow i$ EndWhile

Return tempsum

EndFunc Done 11

X

xor (Boolesches exklusives oder)

Boolescher Ausd 1 xor Boolescher Ausdr 2 ergibt Boolescher Ausdruck

BoolescheListelxorBoolescheListe2 ergibt Boolesche Liste

BoolescheMatrix1xorBoolescheMatrix2 ergibt Boolesche Matrix

Gibt wahr zurück, wenn Boolescher Ausdr1 wahr und Boolescher Ausdr2 falsch ist und umgekehrt.

Gibt falsch zurück, wenn beide Argumente wahr oder falsch sind. Gibt einen vereinfachten Booleschen Ausdruck zurück, wenn eines der beiden Argumente nicht zu wahr oder falsch ausgewertet werden kann.

Hinweis: Siehe or, Seite 121.

 $Ganzzahl1 \times Ganzzahl2 \Rightarrow Ganzzahl$

Katalog > 🗐

true xor true false 5>3 xor 3>5 true

Im Hex-Modus:

Wichtig: Null, nicht Buchstabe O

0h7AC36 xor 0h3D5F 0h79169

xor (Boolesches exklusives oder)

Katalog > 🕮

Vergleicht zwei reelle ganze Zahlen mit Hilfe einer xor-Operation Bit für Bit. Intern werden beide ganzen Zahlen in binäre 32-Bit-Zahlen mit Vorzeichen konvertiert. Beim Vergleich der sich entsprechenden Bits ist das Ergebnis 1, wenn eines der Bits (nicht aber beide) 1 ist; das Ergebnis ist 0, wenn entweder beide Bits 0 oder beide Bits 1 sind. Der zurückgegebene Wert stellt die Bit-Ergebnisse dar und wird im jeweiligen Basis-Modus angezeigt.

Sie können die ganzen Zahlen in ieder Basis eingeben. Für eine binäre oder hexadezimale Eingabe ist das Präfix Ob bzw. Oh zu verwenden. Ohne Präfix werden ganze Zahlen als dezimal behandelt (Basis 10).

Geben Sie eine dezimale ganze Zahl ein, die für eine 64-Bit-Dualform mit Vorzeichen zu groß ist, dann wird eine symmetrische Modulo-Operation ausgeführt, um den Wert in den erforderlichen Bereich zu bringen. Weitere Informationen finden Sie unter ▶Base2. Seite 17.

Hinweis: Siehe or, Seite 121.

Im Bin-Modus:

0b100101 xor 0b100

0b100001

Hinweis: Eine binäre Eingabe kann bis zu 64 Stellen haben (das Präfix 0b wird nicht mitgezählt). Eine hexadezimale Eingabe kann bis zu 16 Stellen aufweisen.

Z

zInterval (z-Konfidenzintervall)

Katalog > 🗐

zInterval σ,*Liste*[,*Häufigkeit*[,*KStufe*]]

(Datenlisteneingabe)

zInterval σ, \overline{x}, n [, KStufe]

(Zusammenfassende statistische Eingabe)

Berechnet ein z-Konfidenzintervall. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

zInterval (z-Konfidenzintervall)

Katalog > 🕮

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.CLower, stat.CUpper	Konfidenzintervall für den unbekannten Populationsmittelwert
$\operatorname{stat}.\overline{\mathbf{x}}$	Stichprobenmittelwert der Datenfolge aus der zufälligen Normalverteilung
stat.ME	Fehlertoleranz
stat.sx	Stichproben-Standardabweichung
stat.n	Länge der Datenfolge mit Stichprobenmittelwert
stat.σ	Bekannte Populations-Standardabweichung für Datenfolge $Liste$

zInterval_1Prop (z-Konfidenzintervall für eine Proportion)

Katalog > 📳

zInterval 1Prop x,n [,KStufe]

Berechnet ein z-Konfidenzinterval für eine Proportion. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

x ist eine nicht negative Ganzzahl.

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.CLower, stat.CUpper	Konfidenzintervall mit dem Konfidenzniveau der Verteilungswahrscheinlichkeit
stat. \hat{p}	Die berechnete Erfolgsproportion
stat.ME	Fehlertoleranz
stat.n	Anzahl der Stichproben in Datenfolge

zInterval_2Prop (z-Konfidenzintervall für zwei Proportionen)

Katalog > 📳

zInterval_2Prop x1,n1,x2,n2[,KStufe]

zInterval_2Prop (z-Konfidenzintervall für zwei Proportionen)

Katalog > 🕮

Berechnet das z-Konfidenzintervall für zwei Proportionen. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

x1 und x2 sind nicht negative Ganzzahlen.

Informationen zu den Auswirkungen leerer Flemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.CLower, stat.CUpper	Konfidenzintervall mit dem Konfidenzniveau der Verteilungswahrscheinlichkeit
stat. $\hat{\pmb{p}}$ Diff	Die geschätzte Differenz zwischen den Proportionen
stat.ME	Fehlertoleranz
stat. \hat{p} 1	Geschätzte erste Stichprobenproportion
stat. p ̂2	Geschätzte zweite Stichprobenproportion
stat.n1	Stichprobenumfang in Datenfolge eins
stat.n2	Stichprobenumfang in Datenfolge zwei

zInterval_2Samp (z-Konfidenzintervall für zwei Stichproben)

Katalog > 🕮

zInterval_2Samp σ_1, σ_2 , Liste1, Liste2 [,Häufigkeit1[,Häufigkeit2,[KStufe]]]

(Datenlisteneingabe)

zInterval 2Samp $\sigma_1, \sigma_2, \overline{x}1, n1, \overline{x}2, n2$ [KStufe]

(Zusammenfassende statistische Eingabe)

Berechnet ein z-Konfidenzintervall für zwei Stichproben. Eine Zusammenfassung der Ergebnisse wird in der Variable *stat.results* gespeichert. (Seite 166.)

Ausgabevariable	Beschreibung
stat.CLower, stat.CUpper	Konfidenzintervall mit dem Konfidenzniveau der Verteilungswahrscheinlichkeit
stat. $\overline{x}1$ - $\overline{x}2$	Stichprobenmittelwerte der Datenfolgen aus der zufälligen Normalverteilung
stat.ME	Fehlertoleranz
stat. \overline{x} 1, stat. \overline{x} 2	Stichprobenmittelwerte der Datenfolgen aus der zufälligen Normalverteilung
stat.σx1, stat.σx2	Stichproben-Standardabweichungen für Liste 1 und Liste 2
stat.n1, stat.n2	Anzahl der Stichproben in Datenfolgen
stat.r1, stat.r2	Bekannte Populations-Standardabweichungen für Datenfolge $Liste\ 1$ und $Liste\ 2$

zTest Katalog > 🗐

zTest μ0,σ,*Liste*,[*Häufigkeit*[,*Hypoth*]]

(Datenlisteneingabe)

zTest $\mu \theta$, σ , \overline{x} ,n[,Hvpoth]

(Zusammenfassende statistische Eingabe)

Führt einen z-Test mit der Häufigkeit Häufigkeitsliste durch. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

Getestet wird H_0 : $\mu = \mu 0$ in Bezug auf eine der folgenden Alternativen:

Für H_a : $\mu < \mu 0$ setzen Sie Hypoth < 0

Für H_a : $\mu \neq \mu 0$ (Standard) setzen Sie Hypoth=0

Für H_a : $\mu > \mu 0$ setzen Sie Hypoth>0

Ausgabevariable	Beschreibung
stat.z	$(\overline{x} - \mu 0) / (\sigma / \text{sqrt}(n))$

Ausgabevariable	Beschreibung
stat.P Value	Kleinste Wahrscheinlichkeit, bei der die Nullhypothese verworfen werden kann
$stat.\overline{\mathbf{x}}$	Stichprobenmittelwert der Datenfolge in Liste
stat.sx	Stichproben-Standardabweichung der Datenfolge. Wird nur für Dateneingabe zurückgegeben.
stat.n	Stichprobenumfang

zTest_1Prop (z-Test für eine Proportion)

Katalog > 🗐

zTest 1Prop $p\theta_{\bullet}x,n[Hypoth]$

Berechnet einen z-Test für eine Proportion. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Siehe Seite 166.)

x ist eine nicht negative Ganzzahl.

Getestet wird H_0 : $p = p\theta$ in Bezug auf eine der folgenden Alternativen:

Für H_a : $p > p\theta$ setzen Sie Hypoth > 0

Für H_a : $p \neq p0$ (Standard) setzen Sie Hypoth=0

Für H_a : $p < p\theta$ setzen Sie Hypoth < 0

Ausgabevariable	Beschreibung
stat.p0	Hypothetische Populations-Standardabweichung
stat.z	Für die Proportion berechneter Standardwert
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
stat. \hat{p}	Geschätzte Stichprobenproportion
stat.n	Stichprobenumfang

zTest_2Prop (z-Test für zwei Proportionen)

Katalog > 🕮

zTest 2Prop x1,n1,x2,n2[Hypoth]

Berechnet einen z-Test für zwei Proportionen. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

x1 und x2 sind nicht negative Ganzzahlen.

Getestet wird H_0 : p1 = p2 in Bezug auf eine der folgenden Alternativen:

Für H_a : p1 > p2 setzen Sie Hypoth>0

Für H_a : $p1 \neq p2$ (Standard) setzen Sie Hypoth=0

Für H_a : $p < p\theta$ setzen Sie Hypoth < 0

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.z	Für die Differenz der Proportionen berechneter Standardwert
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
stat. p ̂1	Geschätzte erste Stichprobenproportion
stat. p ̂2	Geschätzte zweite Stichprobenproportion
stat. \hat{p}	Geschätzte verteilte Stichprobenproportion
stat.n1, stat.n2	Stichprobenanzahl in Versuchen 1 und 2

zTest 2Samp (z-Test für zwei Stichproben)

Katalog > 🕮

zTest_2Samp σ_1, σ_2 , Liste1, Liste2 [,Häufigkeit1[,Häufigkeit2[,Hypoth]]]

(Datenlisteneingabe)

zTest_2Samp $\sigma_1, \sigma_2, \overline{x}1, n1, \overline{x}2, n2[Hypoth]$

(Zusammenfassende statistische Eingabe)

zTest_2Samp (z-Test für zwei Stichproben)

Katalog > 🕮

Berechnet einen z-Test für zwei Stichproben. Eine Zusammenfassung der Ergebnisse wird in der Variable stat.results gespeichert. (Seite 166.)

Getestet wird H_0 : $\mu 1$ = $\mu 2$ in Bezug auf eine der folgenden Alternativen:

Für H_a : $\mu 1 < \mu 2$ setzen Sie *Hypoth*<0

Für H_a : $\mu 1 \neq \mu 2$ (Standard) setzen Sie Hypoth=0

Für H_a : $\mu 1 > \mu 2$ setzen Sie Hypoth > 0

Informationen zu den Auswirkungen leerer Elemente in einer Liste finden Sie unter "Leere (ungültige) Elemente" (Seite 241).

Ausgabevariable	Beschreibung
stat.z	Für die Differenz der Mittelwerte berechneter Standardwert
stat.PVal	Kleinste Signifikanzebene, bei der die Nullhypothese verworfen werden kann
$stat.\overline{x}1$, $stat.\overline{x}2$	Stichprobenmittelwerte der Datenfolgen in $Liste\ 1$ und $Liste\ 2$
stat.sx1, stat.sx2	Stichproben-Standardabweichungen der Datenfolgen in $Liste\ 1$ und $Liste\ 2$
stat.n1, stat.n2	Stichprobenumfang

Sonderzeichen

+ (addieren)	+ Taste	
Wert1 + Wert2⇒Wert	56	56
Gibt die Summe der beiden Argumente	56+4	60
zurück.	60+4	64
	64+4	68
	68+4	72

+ (addieren)

 $Liste1 + Liste2 \Rightarrow Liste$

Matrix1 + Matrix2⇒Matrix

Gibt eine Liste (bzw. eine Matrix) zurück, die die Summen der entsprechenden Elemente von Liste1 und Liste2 (oder Matrix1 und Matrix2) enthält.

$\left\{22,\pi,\frac{\pi}{2}\right\}\to 11$	{22,3.14159,1.5708}
$\left\{10,5,\frac{\pi}{2}\right\} \to l2$	{10,5,1.5708}
11+12	{32,8.14159,3.14159}

Die Argumente müssen die gleiche Dimension besitzen.

Wert + Liste $l \Rightarrow Liste$

Liste1 + Wert⇒Liste

15+{10,15,20} 25,30,35 {10,15,20}+15 25,30,35

Gibt eine Liste zurück, die die Summen von Wert plus jedem Element der Liste 1 enthält.

 $Wert + Matrix l \Rightarrow Matrix$

Matrix1 + Wert⇒Matrix

Gibt eine Matrix zurück, in der Wert zu jedem Element der Diagonalen von Matrix1 addiert ist. Matrix1 muss eine quadratische Matrix sein.

Hinweis: Verwenden Sie .+ (Punkt Plus) zum Addieren eines Ausdrucks zu iedem Flement.

20+ 1	2	21	2
3	4	3	24

- Taste -(subtrahieren) Wert1 - Wert2⇒Wert 6 - 2Gibt Wert1 minus Wert2 zurück. 2.61799 π Liste1 - Liste2⇒Liste {12,-1.85841,0.} $10,5,\frac{\pi}{2}$ Matrix1 - Matrix2⇒Matrix 2 2 Subtrahiert die einzelnen Elemente aus Liste2 (oder Matrix2) von denen in Liste1 (oder Matrix1) und gibt die Ergebnisse zurück.

Dimension besitzen.

Die Argumente müssen die gleiche

-(subtrahieren) - Taste Wert - Liste1⇒Liste 15-{10,15,20} {5,0,-5} {10,15,20}-15 {-5,0,5} Liste1 - Wert⇒Liste Subtrahiert jedes Element der *Liste1* von Wert oder subtrahiert Wert von jedem Element der *Liste1* und gibt eine Liste der Ergebnisse zurück. Wert - Matrix1⇒Matrix 20 - 12-2 -3 16 3 4 *Matrix1* - Wert⇒Matrix

Wert – Matrix I gibt eine Matrix zurück, die Wert multipliziert mit der Einheitsmatrix minus Matrix 1 ist. Matrix1 muss eine quadratische Matrix sein.

Matrix1 - Wert gibt eine Matrix zurück, die Wert multipliziert mit der Einheitsmatrix subtrahiert von Matrix 1 ist. Matrix1 muss eine quadratische Matrix sein.

Hinweis: Verwenden Sie .- (Punkt Minus) zum Subtrahieren eines Ausdrucks von jedem Element.

Die Spaltenanzahl von Matrix1 muss gleich die Zeilenanzahl von Matrix2 sein.

·(multiplizieren)		≭ Taste
Wert1 •Wert2⇒Wert	2·3.45	6.9
Gibt das Produkt der beiden Argumente zurück.		
Liste1•Liste2⇒Liste	$\{1.,2,3\}\cdot\{4,5,6\}$	{4,10,18}
Gibt eine Liste zurück, die die Produkte der entsprechenden Elemente aus $Liste1$ und $Liste2$ enthält.		
Die Listen müssen die gleiche Dimension besitzen.		
Matrix1•Matrix2⇒Matrix	[1 2 2][7 8]	[42 48]
Gibt das Matrizenprodukt von ${\it Matrix 1}$ und ${\it Matrix 2}$ zurück.	$ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 & 8 \\ 7 & 8 \\ 7 & 8 \end{bmatrix} $	[105 120]

·(multiplizieren)

× Taste

 $Wert \bullet Liste 1 \Rightarrow Liste$

 $\pi \cdot \{4,5,6\}$

{12.5664,15.708,18.8496}

Liste 1•Wert⇒Liste

Gibt eine Liste zurück, die die Produkte von Wert und jedem Element der Listel enthält.

Wert•Matrix1⇒Matrix

Matrix1•Wert⇒Matrix

Gibt eine Matrix zurück, die die Produkte von Wert und jedem Element der Matrix1 enthält.

Hinweis: Verwenden Sie . · (Punkt-Multiplikation) zum Multiplizieren eines Ausdrucks mit jedem Element.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.01 0.02 0.03 0.04	2 4
6·identity(3)	6 0 0 0 6 0 0 0 6)) 5]

/(dividieren)

÷ Taste

0.57971

Wert1/Wert2⇒Wert

Gibt Wert1 dividiert durch Wert2 zurück.

Hinweis: Siehe auch Vorlage Bruch, Seite 1.

Liste1/Liste2⇒Liste

Gibt eine Liste der Elemente von Liste 1 dividiert durch Liste2 zurück.

Die Listen müssen die gleiche Dimension besitzen.

Wert / Liste $l \Rightarrow Liste$

 $Liste1 / Wert \Rightarrow Liste$

Gibt eine Liste der Elemente von Wert dividiert durch *Listel* oder*Listel* dividiert durch Wert zurück.

Wert / $Matrix l \Rightarrow Matrix$

 $Matrix1 / Wert \Rightarrow Matrix$

Gibt eine Matrix zurück, die die Quotienten Matrix 1 / Wert enthält.

{	1.,2,3}	
{	4,5,6}	

2

3.45

{2,1,2.44949}

7,9,2 18 14 63 7.9.2

9 2 7.9.2

/(dividieren)

Hinweis: Verwenden Sie. / (Punkt-Division) zum Dividieren eines Ausdrucks durch jedes Element.

^ (Potenz)

↑ Taste

Wert1 ^ Wert2 ⇒ Wert

 $Liste1 \land Liste2 \Rightarrow Liste$

16 $\{2,4,6\}$ $\{\overline{1,2,3}\}$ {2,16,216}

Gibt das erste Argument hoch dem zweiten Argument zurück.

Hinweis: Siehe auch Vorlage Exponent, Seite 1.

Bei einer Liste wird jedes Element aus *Liste1* hoch dem entsprechenden Element aus *Liste2* zurückgegeben.

Im reellen Bereich benutzen Bruchpotenzen mit gekürztem ungeradem Nenner den reellen statt den Hauptzeig im komplexen Modus.

Wert \land Liste $l \Rightarrow$ Liste

Gibt Wert hoch den Elementen von Liste1 zurück.

 $Listel \land Wert \Rightarrow Liste$

Gibt die Flemente von Liste I hoch Wert zurück.

 $Ouadratmatrix1 \land Ganzzahl \Rightarrow Matrix$

Gibt Quadratmatrix1 hoch Ganzzahl zurück.

Quadratmatrix1 muss eine quadratische Matrix sein.

Ist Ganzzahl = -1, wird die inverse Matrix berechnet.

Ist *Ganzzahl* < -1. wird die inverse Matrix hoch der entsprechenden positiven Zahl berechnet.

π{1,2,-3}	{3.14159,9.8696,0.032252}

$\{1,2,3,4\}^{-2}$	$\left\{1,\frac{1}{4}\right\}$	$,\frac{1}{9},$	$\frac{1}{16}$	

 $[1 \ 2]^2$

[3 4]	[15	22]
$[1 \ 2]^{-1}$	-2	1
3 4	3	-1
	2	2]
$[1 \ 2]^{-2}$	11	-5
3 4	2	2
	-15	7
	4	4

7 10

x2 (Quadrat)

x2 Taste

 $Wert12 \Rightarrow Wert$

Gibt das Quadrat des Arguments zurück.

 $Liste 1^2 \Rightarrow Liste$

Gibt eine Liste zurück, die die Produkte der Elemente in Liste 1 enthält.

 $Quadratmatrix 1^2 \Rightarrow Matrix$

Gibt das Matriz-Quadrat von *Quadratmatrix1* zurück. Dies ist nicht gleichbedeutend mit der Berechnung des Quadrats jedes einzelnen Elements. Verwenden Sie .^2, um das Quadrat jedes einzelnen Elements zu berechnen.

4 ²	16
$\{2,4,6\}^2$	{4,16,36}
$ \begin{bmatrix} 2 & 4 & 6 \\ 3 & 5 & 7 \\ 4 & 6 & 8 \end{bmatrix}^{2} $	40 64 88 49 79 109 58 94 130
$\begin{bmatrix} 2 & 4 & 6 \\ 3 & 5 & 7 \\ 4 & 6 & 8 \end{bmatrix} . ^ 2$	4 16 36 9 25 49 16 36 64

.+ (Punkt-Addition)

- + Tasten

 $Matrix1 + Matrix2 \Rightarrow Matrix$

Wert $+ Matrix I \Rightarrow Matrix$

Matrix1 .+ Matrix2 gibt eine Matrix zurück, die Summe jedes Elementpaars von Matrix1 und Matrix2 ist.

Wert .+ Matrix1 gibt eine Matrix zurück, die die Summe von Zahl und iedem Flement von Matrix 1 ist.

$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} . + \begin{bmatrix} 10 & 30 \\ 20 & 40 \end{bmatrix} $	[11 32] 23 44]
$5. + \begin{bmatrix} 10 & 30 \\ 20 & 40 \end{bmatrix}$	[15 35] 25 45]

.- (Punkt-Subt.)

- Tasten

 $Matrix1 - Matrix2 \Rightarrow Matrix$

Wert $-Matrix l \Rightarrow Matrix$

Matrix1 .- Matrix2 gibt eine Matrix zurück, die die Differenz iedes Elementpaars von *Matrix1* und *Matrix2* ist.

Wert .- Matrix 1 gibt eine Matrix zurück, die die Differenz von Wert und jedem Flement von Matrix 1 ist.

$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix} $	-9 -18 -27 -36
[3 4] [30 40]	[-27 -36]
$5 \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix}$	[-5 -15] [-25 -35]
[30 40]	[-25 -35]

. (Punkt-Mult.)

. × Tasten

 $Matrix1 : Matrix2 \Rightarrow Matrix$

Wert $:Matrix I \Rightarrow Matrix$

Matrix1 . Matrix2 gibt eine Matrix zurück, die das Produkt jedes Elementpaars von *Matrix1* und *Matrix2* ist.

Wert . Matrix 1 Gibt eine Matrix zurück, die die Produkte von Wert und jedem Flement der Matrix I enthält.

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix}$	10	40 160
[3 4] [30 40]	90	160
5 · \[\begin{pmatrix} 10 & 20 \\ 30 & 40 \end{pmatrix} \]	50 150	100
[30 40]	150	200

. / (Punkt-Division)

. ÷ Tasten

 $Matrix1 \cdot I Matrix2 \Rightarrow Matrix$

Wert . I Matrix $l \Rightarrow Matrix$

Matrix1 . / Matrix2 gibt eine Matrix zurück, die der Quotient jedes Elementpaars von *Matrix1* und *Matrix2* ist.

Wert . / Matrix1 gibt eine Matrix zurück, die der Quotient von Wert und jedem Flement von Matrix1 ist.

$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix} $	$\begin{bmatrix} \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} \end{bmatrix}$
5 / \left[\begin{pmatrix} 10 & 20 \\ 30 & 40 \end{pmatrix}	$\begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{8} \end{bmatrix}$

.^ (Punkt-Potenz)

 $Matrix1 \cdot Matrix2 \Rightarrow Matrix$

Wert \land Matrix $l \Rightarrow Matrix$

Matrix1 .^ Matrix2 gibt eine Matrix zurück, in der jedes Element aus Matrix2 Exponent des entsprechenden Elements aus Matrix1 ist.

Wert .^ Matrix1 gibt eine Matrix zurück, in der jedes Element aus *Matrix1* Exponent von Wert ist.

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \land \begin{bmatrix} 0 & 2 \\ 3 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 4 \\ 27 & \frac{1}{4} \end{bmatrix}$
$5 ildot \begin{bmatrix} 0 & 2 \\ 3 & -1 \end{bmatrix}$	[1 25]
[3 -1]	$\begin{bmatrix} 1 & 25 \\ 125 & \frac{1}{5} \end{bmatrix}$

-(Negation)

(–) Taste

ctrl Tasten

- $-Wert1 \Rightarrow Wert$
- $-Liste1 \Rightarrow Liste$
- $-Matrix 1 \Rightarrow Matrix$

Gibt die Negation des Arguments zurück.

Bei einer Liste oder Matrix werden alle Elemente negiert zurückgegeben.

Ist das Argument eine binäre oder hexadezimale ganze Zahl, ergibt die Negation das Zweierkomplement.

Tm Bin-Modus:

Wichtig: Null. nicht Buchstabe O

-0b100101

Um das ganze Ergebnis zu sehen, drücken Sie ▲ und verwenden dann ◀ und ▶, um den Cursor zu bewegen.

% (Prozent)

Wert1 % ⇒ Wert

Listel % ⇒ Liste

 $Matrix1 \% \Rightarrow Matrix$

argument

Ergibt

Bei einer Liste oder einer Matrix wird eine Liste/Matrix zurückgegeben, in der jedes Element durch 100 dividiert ist.

Hinweis: Erzwingen eines Näherungsergebnisses,

Handheld: Drücken Sie ctrl enter.

Windows®: Drücken Sie Strg+Eingabetaste. Macintosh®: Drücken \mathcal{H} +Eingabetaste. iPad®: Halten Sie die Eingabetaste gedrückt

und wählen Sie ≈ aus.

13%	0.13
({1,10,100})%	$\{0.01, 0.1, 1.\}$

= (gleich)

 $Ausdr1 = Ausdr2 \Rightarrow Boolescher$ Ausdruck

 $Liste1 = Liste2 \Rightarrow Boolesche Liste$

 $Matrix1 = Matrix2 \Rightarrow Boolesche Matrix$

Gibt wahr zurück, wenn Ausdr1 bei Auswertung gleich Ausdr2 ist.

= Taste

Beispielfunktion mit den mathematischen Vergleichssymbolen: =, \neq , <, \leq , >, \geq

= (gleich)

= | Taste

Gibt falsch zurück, wenn Ausdr1 bei Auswertung ungleich Ausdr2 ist.

In allen anderen Fällen wird eine vereinfachte Form der Gleichung zurückgegeben.

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define g(x)=Func

If $x \le -5$ Then

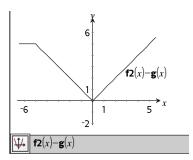
Return 5

ElseIf x > -5 and x < 0 Then

Return -x

ElseIf $x \ge 0$ and $x \ne 10$ Then

Return x


ElseIf x=10 Then

Return 3

EndIf

EndFunc Done

Ergebnis der graphischen Darstellung g(x)

≠ (ungleich)

 $Ausdr1 \neq Ausdr2 \Rightarrow Boolescher Ausdruck$

Siehe Beispiel bei "=" (gleich).

 $Liste1 \neq Liste2 \Rightarrow Boolesche Liste$

 $Matrix1 \neq Matrix2 \Rightarrow Boolesche Matrix$

Gibt wahr zurück, wenn Ausdr1 bei Auswertung ungleich Ausdr2 ist.

Gibt falsch zurück, wenn Ausdr1 bei Auswertung gleich Ausdr2 ist.

In allen anderen Fällen wird eine vereinfachte Form der Gleichung zurückgegeben.

≠ (ungleich)

Tasten

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie /= eintippen

< (kleiner als)

ctri = Tasten

 $Ausdr1 < Ausdr2 \Rightarrow Boolescher Ausdruck$

 $Liste1 < Liste2 \Rightarrow Boolesche Liste$

 $Matrix1 < Matrix2 \Rightarrow Boolesche Matrix$

Gibt wahr zurück, wenn Ausdr1 bei Auswertung kleiner als Ausdr2 ist.

Gibt falsch zurück, wenn Ausdr1 bei Auswertung größer oder gleich Ausdr2 ist.

In allen anderen Fällen wird eine vereinfachte Form der Gleichung zurückgegeben.

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

≤ (kleiner oder gleich)

ctrl = Tasten

 $Ausdr1 \leq Ausdr2 \Rightarrow Boolescher Ausdruck$

Siehe Beispiel bei "=" (gleich).

Siehe Beispiel bei "=" (gleich).

 $Liste1 \leq Liste2 \Rightarrow Boolesche Liste$

 $Matrix1 \leq Matrix2 \Rightarrow Boolesche Matrix$

Gibt wahr zurück, wenn Ausdr1 bei Auswertung kleiner oder gleich Ausdr2 ist.

Gibt falsch zurück, wenn Ausdr1 bei Auswertung größer als *Ausdr2* ist.

In allen anderen Fällen wird eine vereinfachte Form der Gleichung zurückgegeben.

≤ (kleiner oder gleich)

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie das Tastenkürzel <=

> (größer als)

ctri = Tasten

 $Ausdr1 > Ausdr2 \Rightarrow Boolescher Ausdruck$

Siehe Beispiel bei "=" (gleich).

 $Liste1 > Liste2 \Rightarrow Boolesche Liste$

 $Matrix1 > Matrix2 \Rightarrow Boolesche Matrix$

Gibt wahr zurück, wenn Ausdr1 bei Auswertung größer als *Ausdr2* ist.

Gibt falsch zurück, wenn Ausdr1 bei Auswertung kleiner oder gleich Ausdr2 ist.

In allen anderen Fällen wird eine vereinfachte Form der Gleichung zurückgegeben.

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

≥ (größer oder gleich)

ctrl = Tasten

 $Ausdr1 \ge Ausdr2 \Rightarrow Boolescher Ausdruck$

Siehe Beispiel bei "=" (gleich).

 $Liste1 \ge Liste2 \Rightarrow Boolesche Liste$

 $Matrix1 \ge Matrix2 \Rightarrow Boolesche Matrix$

Gibt wahr zurück, wenn Ausdr1 bei Auswertung größer oder gleich Ausdr2 ist.

Gibt falsch zurück, wenn Ausdr1 bei Auswertung kleiner oder gleich *Ausdr2* ist.

In allen anderen Fällen wird eine vereinfachte Form der Gleichung zurückgegeben.

≥ (größer oder gleich)

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie das Tastenkürzel >=

⇒ (logische Implikation)

ctrl = Tasten

 $BoolescherAusd1 \Rightarrow BoolescherAusdr2$ ergibt Boolescher Ausdruck

 $BoolescheListe1 \Rightarrow BoolescheLiset2$ ergibt Boolesche Liste

 $BoolescheMatrix1 \Rightarrow$ BoolescheMatrix2 ergibt Boolesche Matrix

 $Ganzzahl1 \Rightarrow Ganzzahl2$ ergibt Ganzzahl

5>3 or 3>5	true
5>3 ⇒ 3>5	false
3 or 4	7
3 ⇒ 4	-4
{1,2,3} or {3,2,1}	{3,2,3}
$\{1,2,3\} \Rightarrow \{3,2,1\}$	{-1,-1,-3}

Wertet den Ausdruck not < Argument 1> or <Argument2> aus und gibt "wahr", "falsch" oder eine vereinfachte Form des Arguments zurück.

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie das Tastenkürzel =>

⇔ (logische doppelte Implikation, XNOR)

ctri = Tasten

BoolescherAusdr1 ⇔ BoolescherAusdr2 ergibt Boolescher Ausdruck

 $BoolescheListe1 \Leftrightarrow BoolescheLiset2$ ergibt Boolesche Liste

 $BoolescheMatrix1 \Leftrightarrow$ BoolescheMatrix2 ergibt Boolesche Matrix

 $Ganzzahl1 \Leftrightarrow Ganzzahl2$ ergibt Ganzzahl

5>3 xor 3>5	true
5>3 ⇔ 3>5	false
3 xor 4	7
3 ⇔ 4	-8
{1,2,3} xor {3,2,1}	{2,0,2}
$\{1,2,3\} \Leftrightarrow \{3,2,1\}$	{-3,-1,-3}

Gibt die Negation einer XOR boleschen Operation auf beiden Argumenten zurück. Gibt "wahr", "falsch" oder eine vereinfachte Form des Arguments zurück.

Bei Listen und Matrizen werden die Ergebnisse des Vergleichs der einzelnen Elemente zurückgegeben.

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie <=> drücken

! (Fakultät)		?!▶ Taste
$Wert1! \Rightarrow Wert$	5!	120
$Listel! \Rightarrow Liste$	({5,4,3})!	{120,24,6}
Matrix1! ⇒ Matrix	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$!	1 2 6 24

Gibt die Fakultät des Arguments zurück.

Bei Listen und Matrizen wird eine Liste/Matrix mit der Fakultät der einzelnen Elemente zurückgegeben.

&		/k Tasten
String1 & String2 \Rightarrow String	"Hello "&"Nick"	"Hello Nick"

& /k Tasten

Gibt einen String zurück, der durch Anfügen von *String2* an *String1* gebildet wurde.

d() (Ableitung) Katalog > 🗐

d(Ausdr1, Var[, Ordnung]**) |** Var=Wert⇒Wert

d(Ausdr1, Var[, Ordnung])⇒Wert

 $d(Listel, Var[, Ordnung]) \Rightarrow Liste$

 $d(Matrix1, Var[, Ordnung]) \Rightarrow Matrix$

Außer bei der ersten Syntax müssen Sie einen Zahlenwert in der Variablen Var speichern, bevor Sie **d()** auswerten. Siehe hierzu die Beispiele.

d() lässt sich verwenden, um die erste und zweite Ableitung an einem Punkt numerisch durch automatische Ableitungsmethoden zu berechnen.

Ordnung (falls angegeben) muss 1 oder 2 sein. Die Vorgabe ist 1.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie derivative (...) eintippen.

Hinweis: Siehe auch **Erste Ableitung**, Seite 5, und **Zweite Ableitung**, Seite 6.

Hinweis: Der Algorithmus von d() hat eine Einschränkung: Er arbeitet den nicht-vereinfachten Ausdruck rekursiv ab und berechnet dabei den numerischen Wert der ersten (und ggf. der zweiten) Ableitung sowie die Auswertung jedes Unterausdrucks. Dies kann zu unerwarteten Ergebnissen führen.

$$\frac{\frac{d}{dx}(|x|)|_{x=0}}{x:=0:\frac{d}{dx}(|x|)}$$
 undef
$$\frac{d}{dx}(|x|)$$
 undef
$$\frac{d}{dx}(|x|)$$
 $\frac{d}{dx}(|x|^2,x^3,x^4)$ $\frac{d}{dx}(|x|^2,x^3,x^4)$

$$\frac{d}{dx} \left(x \cdot \left(x^2 + x \right)^{\frac{1}{3}} \right) |_{x=0}$$
 undef centralDiff $\left(x \cdot \left(x^2 + x \right)^{\frac{1}{3}} \right) |_{x=0}$

Hierzu rechts ein Beispiel. Die erste Ableitung von $x \cdot (x^2+x)^(1/3)$ bei x=0 ist gleich 0. Nun ist allerdings die erste Ableitung des Unterausdrucks (x^2+x)^ (1/3) bei x=0 nicht definiert. Dieser Wert wird gleichzeitig jedoch verwendet, um die Ableitung des Gesamtausdrucks zu berechnen. Daher meldet d() das Ergebnis als nicht definiert und zeigt eine Warnmeldung an.

Wenn Sie bei der Arbeit auf diese Beschränkung stoßen, prüfen Sie die Lösung grafisch. Ggf. können Sie es auch mit centralDiff() probieren.

∫() (Integral)

Katalog > 🗐

 $[(Ausdr1, Var, Untere, Obere) \Rightarrow Wert$

Gibt das Integral von Ausdr 1 bezüglich der Variablen Var von Untere bis Ohere zurück. Hiermit können Sie das bestimmte Integral numerisch berechnen. Hierzu wird dieselbe Methode wie bei nInt() verwendet.

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie Integral (...) eintippen.

Hinweis: Siehe auch nInt(), Seite 114, und Vorlage Bestimmtes Integral, Seite 6.

[1	0.333333
$x^2 dx$	
Jo	

$\sqrt{()}$ (Quadratwurzel)

ctri x2 Tasten

 (Wert1)⇒Wert
 (Liste1)⇒Liste

 $\{9,2,4\}$ {3,1.41421,2}

Gibt die Quadratwurzel des Arguments zurück.

Bei einer Liste wird die Quadratwurzel für iedes Element von Listel zurückgegeben.

$\sqrt{()}$ (Quadratwurzel)

| ctrl || x2 | Tasten

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie sgrt(...) eintippen.

Hinweis: Siehe auch Vorlage Quadratwurzel, Seite 1.

Π () (ProdSeq)

Katalog > 🕮

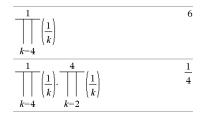
 $\Pi(Ausdr1, Var, Von, Bis) \Rightarrow Ausdruck$

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben. indem Sie prodSeq (...) eintippen.

Wertet *Ausdr1* für jeden Wert von *Var* zwischen Von und Bis aus und gibt das Produkt der Ergebnisse zurück.

Hinweis: Siehe auch Vorlage Produkt (Π), Seite 5.

 $\Pi(Ausdr1, Var, Von, Von-1) \Rightarrow 1$


 $\Pi(Ausdr1, Var, Von, Bis) \Rightarrow 1/\Pi$ (Ausdr1, Var, Bis+1, Von-1) if Bis <Von-1

Die verwendeten Produktformeln wurden ausgehend von der folgenden Quelle entwickelt:

Ronald L. Graham, Donald E. Knuth, Oren Patashnik: Concrete Mathematics: A Foundation for Computer Science. Reading, Massachusetts: Addison-Wesley 1994.

$\frac{}{\left \right } \left(\frac{1}{n}\right)$	$\frac{1}{120}$
n=1	
$\frac{5}{\left \prod_{n=1}^{5} \left(\left\{ \frac{1}{n}, n, 2 \right\} \right) \right }$	$\left\{\frac{1}{120},120,32\right\}$

Σ () (SumSeq)

Katalog > 🕎

 $\Sigma(Ausdr1, Var, Von, Bis) \Rightarrow Ausdruck$

Hinweis: Sie können diese Funktion über die Tastatur Ihres Computers eingeben, indem Sie sumSeq (...) eintippen.

5	137
$\setminus (1)$	60
$\left\langle \frac{n}{n}\right\rangle$	
n=1	

 Σ () (SumSeq) Katalog > 🕮

Wertet Ausdr1 für ieden Wert von Var zwischen Von und Bis aus und gibt die Summe der Ergebnisse zurück.

Hinweis: Siehe auch Vorlage Summe, Seite 5.

 $\Sigma(Ausdrl, Var, Von, Von-1) \Rightarrow 0$

 $\Sigma(Ausdr1, Var, Von, Bis) \Rightarrow \Sigma(Ausdr1,$ Var, Bis+1, Von-1) if Bis < Von-1

0

Die verwendeten Summenformeln wurden ausgehend von der folgenden Quelle entwickelt:

Ronald L. Graham, Donald E. Knuth, Oren Patashnik: Concrete Mathematics: A Foundation for Computer Science. Reading, Massachusetts: Addison-Wesley 1994.

$$\frac{1}{\sum_{k=4}^{1} (k)}$$

$$\frac{1}{\sum_{k=4}^{1} (k) + \sum_{k=2}^{4} (k)}$$
4

 Σ Int() Katalog > 🕮

 $\Sigma Int(NPmt1, NPmt2, N, I, PV, [Pmt],$ [FV], [PpY], [CpY], [PmtAt], $[WertRunden] \Longrightarrow Wert$

Σ Int

 $(NPmt1,NPmt2,AmortTabelle) \Rightarrow Wert$

Amortisationsfunktion, die die Summe der Zinsen innerhalb eines angegebenen Zahlungsbereichs berechnet.

NPmt1 und NPmt2 definieren Anfang und Ende des Zahlungsbereichs.

N, I, PV, Pmt, FV, PpY, CpY und PmtAtwerden in der TVM-Argumentetabelle (Seite 183) beschrieben.

- Wenn Sie Pmt nicht angeben, wird standardmäßig *Pmt*=**tvmPmt** (N,I,PV,FV,PpY,CpY,PmtAt)eingesetzt.
- Wenn Sie FV nicht angeben, wird standardmäßig FV=0 eingesetzt.

 Σ Int(1,3,12,4.75,20000,,12,12) -213.48

tbl:=amortTbl(12,12,4.75,20000,,12,12) 0. 0. 20000. -77.49 -1632.43 18367.6 -71.17 -1638.75 16728.8 3 -64.82 -1645.115083.7 -58.44 -1651.48 13432.2 5 -52.05 -1657.87 11774.4 $^{-45.62}$ -1664.310110.1 6 -39.17 -1670.75 8439.32 -32.7-1677.226762.1 -26.2-1683.72 5078.38 10 -19.68 -1690.24 3388.14 11 -13.13 -1696.79 1691.35 -6.55 -1703.37-12.02

 $\Sigma Int(1,3,tbl)$ -213.48 Σ Int() Katalog > \mathbb{Q}_{2}^{2}

 Die Standardwerte für PpY, CpY und PmtAt sind dieselben wie bei den TVM-Funktionen.

WertRunden legt die Anzahl der Dezimalstellen für das Runden fest. Standard=2.

ΣInt(NPmt1,NPmt2,AmortTable)
berechnet die Summe der Zinsen auf der Grundlage der Amortisationstabelle AmortTabelle. Das Argument AmortTabelle muss eine Matrix in der unter amortTbl(), Seite 7, beschriebenen Form sein.

Hinweis: Siehe auch Σ Prn() auf dieser und **Bal()**, Seite 16.

ΣPrn() Katalog > 🗐

 Σ Prn(NPmt1, NPmt2, N, I, PV, [Pmt], [FV], [PpY], [CpY], [PmtAt], [WertRunden]) \Rightarrow Wert

Σ Prn

(NPmt1,NPmt2,AmortTabelle)⇒Wert

Amortisationsfunktion, die die Summe der Tilgungszahlungen innerhalb eines angegebenen Zahlungsbereichs berechnet.

NPmt1 und *NPmt2* definieren Anfang und Ende des Zahlungsbereichs.

N, I, PV, Pmt, FV, PpY, CpY und PmtAt werden in der TVM-Argumentetabelle (Seite 183) beschrieben.

- Wenn Sie Pmt nicht angeben, wird standardmäßig Pmt=tvmPmt (N,I,PV,FV,PpY,CpY,PmtAt) eingesetzt.
- Wenn Sie FV nicht angeben, wird standardmäßig FV=0 eingesetzt.
- Die Standardwerte für PpY, CpY und PmtAt sind dieselben wie bei den TVM-Funktionen.

ΣPrn(1,3,12,4.75,20000,,12,12) -4916.28

tbl:=amortTbl(12,12,4.75,20000,,12,12) 0 0. 0. 20000. 1 -77.49 -1632.43 18367.57 2 -71.17 -1638.75 16728.82 3 -64.82 -1645.1 15083.72 4 -58.44 -1651.48 13432.24 5 -52.05 -1657.87 11774.37 6 -45.62 -1664.3 10110.07 -39.17 -1670.75 8439.32 7 8 -32.7 -1677.22 6762.1 -26.2 -1683.72 5078.38 10 -19.68 -1690.24 3388.14 11 -13.13 -1696.79 1691.35 12 -6.55 -1703.37 -12.02 $\Sigma Prn(1,3,tbl)$ -4916.28 $\Sigma Prn()$ Katalog > 🕮

WertRunden legt die Anzahl der Dezimalstellen für das Runden fest. Standard=2.

 Σ Prn(NPmt1,NPmt2,AmortTabelle) berechnet die Summe der gezahlten Tilgungsbeträge auf der Grundlage der Amortisationstabelle *AmortTabelle*. Das Argument *AmortTabelle* muss eine Matrix in der unter amortTbl(), Seite 7, beschriebenen Form sein.

Hinweis: Siehe auch Σ Int() auf dieser und Bal(), Seite 16.

(Umleitung)

varNameString

Greift auf die Variable namens VarNameString zu. So können Sie innerhalb einer Funktion Variablen unter Verwendung von Strings erzeugen.

	ctrl 🖾 Tasten	
xyz:=12	12	
#("x"&"y"&"z")	12	

Erzeugt oder greift auf die Variable xyz zu.

$10 \rightarrow r$	10
"r" → s1	"r"
#s1	10

Gibt den Wert der Variable (r) zurück, dessen Name in Variable s1 gespeichert ist.

E (Wissenschaftliche Schreibweise)

*Mantisse***E***Exponent*

Gibt eine Zahl in wissenschaftlicher Schreibweise ein. Die Zahl wird als $Mantisse \times 10^{Exponent}$ interpretiert.

Tipp: Wenn Sie eine Potenz von 10 eingeben möchten, ohne ein Dezimalwertergebnis zu verursachen, verwenden Sie 10^Ganzzahl.

	EE Tast	
23000.	23000.	
2300000000.+4.1e15	4.1E15	
3·10 ⁴	30000	

E (Wissenschaftliche Schreibweise)

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie @E eintippen. Tippen Sie zum Beispiel 2.3@E4 ein, um 2.3E4 einzugeben.

g (Neugrad)

1 Taste

Ausdr1**g**⇒Ausdruck

 $Ausdrl\mathbf{g} \Rightarrow Ausdruck$

*Liste1***g**⇒*Liste*

 $Matrix1g \Rightarrow Matrix$

Diese Funktion gibt Ihnen die Möglichkeit, im Grad- oder Bogenmaß-Modus einen Winkel in Neugrad anzugeben.

Im Winkelmodus Bogenmaß wird Ausdr1 mit $\pi/200$ multipliziert.

Im Winkelmodus Grad wird Ausdr1 mit g/100 multipliziert.

Im Neugrad-Modus wird Ausdr1 unverändert zurückgegeben.

Hinweis: Sie können dieses Sonderzeichen über die Tastatur Ihres Computers eingeben, indem Sie @a eintippen.

Im Grad-, Neugrad- oder Bogenmaß-Modus:

$\cos(50^{g})$	0.707107
cos({0,100g,200g})	{1,0.,-1.}

r(Bogenmaß)

1 Taste

 $Wert1^r \Rightarrow Wert$

 $Liste1^r \Rightarrow Liste$

 $Matrix I^{r} \Rightarrow Matrix$

Diese Funktion gibt Ihnen die Möglichkeit, im Grad- oder Neugrad-Modus einen Winkel im Bogenmaß anzugeben.

Im Winkelmodus Grad, Neugrad oder Bogenmaß:

$$\cos\left(\frac{\pi}{4^{r}}\right) \qquad 0.707107$$

$$\cos\left(\left\{0^{r},\left(\frac{\pi}{12}\right)^{r},-(\pi)^{r}\right\}\right) \qquad \left\{1,0.965926,-1.\right\}$$

r(Bogenmaß)

| 1 | Taste

Im Winkelmodus Grad wird das Argument mit $180/\pi$ multipliziert.

Im Winkelmodus Bogenmaß wird das Argument unverändert zurückgegeben.

Im Neugrad-Modus wird das Argument mit $200/\pi$ multipliziert.

Tipp: Verwenden Sie r in einer Funktionsdefinition, wenn Sie bei Ausführung der Funktion das Bogenmaß frei von der Winkelmoduseinstellung erzwingen möchten.

Hinweis: Sie können dieses Sonderzeichen über die Tastatur Ihres Computers eingeben, indem Sie @r eintippen.

° (Grad)

1 Taste

Wert1°⇒Wert

Liste1°⇒Liste

Matrix1°⇒Matrix

Diese Funktion gibt Ihnen die Möglichkeit, im Neugrad- oder Bogenmaß-Modus einen Winkel in Grad anzugeben.

Im Winkelmodus Bogenmaß wird das Argument mit $\pi/180$ multipliziert.

Im Winkelmodus Grad wird das Argument unverändert zurückgegeben.

Im Winkelmodus Neugrad wird das Argument mit 10/9 multipliziert.

Hinweis: Sie können dieses Sonderzeichen über die Tastatur Ihres Computers eingeben, indem Sie @d eintippen.

Im Winkelmodus Grad, Neugrad oder Bogenmaß:

cos(45°) 0.707107

Im Winkelmodus Bogenmaß:

°, ', " (Grad/Minute/Sekunde)

ctrl 🕮 Taster

ctrl 🕮 Tasten

 $dd^{\circ}mm'ss.ss" \Rightarrow Ausdruck$

 $\it dd$ Eine positive oder negative Zahl

mmEine nicht negative Zahl

ss.ssEine nicht negative Zahl

Gibt dd+(mm/60)+(ss.ss/3600) zurück.

Mit einer solchen Eingabe auf der 60er-Basis können Sie:

- Einen Winkel unabhängig vom aktuellen Winkelmodus in Grad/Minuten/Sekunden eingeben.
- Uhrzeitangaben in Stunden/Minuten/Sekunden vornehmen.

Hinweis: Nach ss.ss werden zwei Apostrophe (") gesetzt, kein Anführungszeichen (").

Im Grad-Modus:

25°13'17.5"	25.2215
25°30'	51
	2

∠ (Winkel)

 $[Radius, \angle \theta_Winkel] \Rightarrow Vektor$

(Eingabe polar)

 $[Radius, \angle \theta_Winkel, Z_Koordinate]$ ⇒ Vektor

(Eingabe zylindrisch)

[Radius,∠ θ _Winkel,∠ θ _Winkel]⇒Vektor

(Eingabe sphärisch)

Gibt Koordinaten als Vektor zurück, wobei die aktuelle Einstellung für Vektorformat gilt: kartesisch, zylindrisch oder sphärisch.

Hinweis: Sie können dieses Sonderzeichen über die Tastatur Ihres Computers eingeben, indem Sie @< eintippen.

(Größe ∠ Winkel)⇒komplexerWert

Im Bogenmaß-Modus mit Vektorformat eingestellt auf:

kartesisch

zylindrisch

sphärisch

$$\begin{array}{c|cccc}
[5 & \angle 60^{\circ} & \angle 45^{\circ}] \\
& & [5. & \angle 1.0472 & \angle 0.785398]
\end{array}$$

Im Winkelmodus Bogenmaß und Komplex-Formatmodus "kartesisch":

∠ (Winkel)

(Eingabe polar)

Dient zur Eingabe eines komplexen Werts in polarer $(r \angle \theta)$ Form. Der Winkel wird gemäß der aktuellen Winkelmoduseinstellung interpretiert.

5+3· <i>i</i> -	10	_	$\frac{\pi}{4}$

 $-2.07107 - 4.07107 \cdot i$

$$5+3\cdot i-\left(10 \angle \frac{\pi}{4}\right)$$

 $-2.07107 - 4.07107 \cdot i$

_ (Unterstrich als leeres Element)

Siehe "Leere (ungültige) Elemente", Seite 241.

10^()

Katalog > 🗐 $10^{1.5}$

10^(Wert1**)**⇒Wert

10^(Listel**)** \Rightarrow Liste

Gibt 10 hoch Argument zurück.

Bei einer Liste wird 10 hoch jedem Element von Listel zurückgegeben.

10^(Quadratmatrix 1**)** $\Rightarrow Quadratmatrix$

Ergibt 10 hoch *Quadratmatrix1*. Dies ist nicht gleichbedeutend mit der Berechnung von 10 hoch jedem Element. Näheres zur Berechnungsmethode finden Sie im Abschnitt cos().

Quadratmatrix1 muss diagonalisierbar sein. Das Ergebnis enthält immer Fließkommazahlen.

2 1 10 6 -2 1

> 1.14336e7 8.17155e6 6.67589e6 9.95651E6 7.11587E6 5.81342E6 7.65298E6 5.46952E6 4.46845E6

^-1(Kehrwert)

Katalog > 🕮

31.6228

Wert1 ^-1⇒Wert

0.322581 $(3.1)^{-1}$

Liste1 ^-1⇒Liste

Gibt den Kehrwert des Arguments zurück.

Bei einer Liste wird für jedes Element von Liste1 der Kehrwert zurückgegeben.

^-1(Kehrwert)

Katalog > 🕮

Ouadratmatrix1 **^-**¹⇒*Ouadratmatrix*

Gibt die Inverse von *Qudratmatrix1* zurück.

Quadratmatrix1 muss eine nichtsinguläre quadratische Matrix sein.

$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}^{-1}$	$\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & \frac{-1}{2} \end{bmatrix}$
		2 2

x+1|x=3

 $x+55|x=\sin(55)$

| (womit-Operator)

ctrl Tasten

54.0002

Ausdr | BoolescherAusdr1 [andBoolescherAusdr2]...

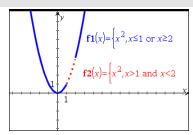
Ausdr | BoolescherAusdr1 [orBoolescherAusdr2]...

Das womit-Symbol ("|") dient als binärer Operator. Der Operand links von | ist ein Ausdruck. Der Operand rechts von | gibt eine oder mehrere Relationen an, die auf die Vereinfachung des Ausdrucks einwirken sollen. Bei Angabe mehrerer Relationen nach dem | sind diese jeweils mit logischen "and" oder "or" Operatoren miteinander zu verketten.

Der womit-Operator erfüllt drei Grundaufgaben:

- Ersetzung
- Intervallbeschränkung
- Ausschließung

Ersetzungen werden in Form einer Gleichung angegeben, wie etwa x=3 oder y=sin(x). Am wirksamsten ist eine Ersetzung, wenn die linke eine einfache Variable ist. $Ausdr \mid Variable = Wert$ bewirkt, dass jedes Mal, wenn Variable in Ausdr vorkommt. Wert ersetzt wird.


Intervallbeschränkungen werden in Form einer oder mehrerer mit logischen "and" oder "or" Operatoren verknüpfte Ungleichungen angegeben. Intervallbeschränkungen ermöglichen auch Vereinfachungen, die andernfalls ungültig oder nicht berechenbar wären.

$\overline{x^3 - 2 \cdot x + 7 \rightarrow f(x)}$	Done
$f(x) x=\sqrt{3}$	8.73205

$$\frac{\text{nSolve}(x^3 + 2 \cdot x^2 - 15 \cdot x = 0, x)}{\text{nSolve}(x^3 + 2 \cdot x^2 - 15 \cdot x = 0, x) | x > 0 \text{ and } x < 5} \frac{0}{3}.$$

| (womit-Operator)

 $\frac{\pi}{}$ \rightarrow myvar

 $2 \cdot \cos(x) \rightarrow vI(x)$

2 3

"Hello" → str1

4 5 6

1.2.3.4} $\rightarrow lst5$

→ matg

Ausschließungen verwenden den relationalen Operator "ungleich" (/= oder ≠), um einen bestimmten Wert bei der Operation auszuschließen.

→ (speichern)

ctrl var Taste

0.785398

 $\frac{\{1,2,3,4\}}{[1 \ 2 \ 3]}$

4 5 6

"Hello"

Done

Wert → Var

Liste → Var

Matrix → Var

 $Expr \rightarrow Funktion(Param 1,...)$

 $List \rightarrow Funktion(Param 1,...)$

 $Matrix \rightarrow Funktion(Param1,...)$

Wenn Variable *Var* noch nicht existiert, wird *Var* erzeugt und auf *Wert*, *Liste* oder *Matrix* initialisiert.

Wenn *Var* existiert und nicht gesperrt oder geschützt ist, wird der Variableninhalt durch *Wert*, *Liste* oder *Matrix* ersetzt.

Hinweis: Sie können diesen Operator über die Tastatur Ihres Computers eingeben, indem Sie das Tastenkürzel =: eintippen. Geben Sie zum Beispiel pi/4 =: myvar ein.

:= (zuweisen)

ctri 🖦 Tasten

Var := Wert

Var := Liste

Var := Matrix

Function(Param1,...) := Ausdr

Function(Param 1....) := Liste

Function(Param1,...) := Matrix

Wenn Variable Var noch nicht existiert, wird Var erzeugt und auf Wert, Liste oder Matrix initialisiert.

Wenn Var existiert und nicht gesperrt oder geschützt ist, wird der Variableninhalt durch Wert. Liste bzw. Matrix ersetzt.

$myvar := \frac{\pi}{4}$.785398
$y1(x):=2\cdot\cos(x)$	Done
lst5:={1,2,3,4}	{1,2,3,4}
$matg := \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$
str1:="Hello"	"Hello"

© (Kommentar)

© [Text]

© verarbeitet Text als Kommentarzeile und ermöglicht so die Eingabe von Anmerkungen zu von Ihnen erstellten Funktionen und Programmen.

© kann an den Zeilenanfang oder an eine beliebige Stelle der Zeile gesetzt werden. Alles, was rechts von © bis zum Zeilenende steht, gilt als Kommentar.

Hinweis zum Eingeben des Beispiels:

Anweisungen für die Eingabe von mehrzeiligen Programm- und Funktionsdefinitionen finden Sie im Abschnitt "Calculator" des Produkthandbuchs.

Define g(n)=Func

© Declare variables

Local i.result result:=0

For i,1,n,1 ©Loop n times

ctrl 🕮 Tasten

result:=result+i²

EndFor

Return result

EndFunc

Done g(3)14

0b, 0h

0 B Tasten, 0 H Tasten

0b binäre Zahl

Oh hexadezimale Zahl

Im Dec-Modus:

0b10+0hF+10

27

OB Tasten, **OH** Tasten 0b, 0h

0b10+0hF+10

Kennzeichnet eine Dual- bzw. Hexadezimalzahl. Zur Eingabe einer Dual- oder Hexadezimalzahl muss unabhängig vom jeweiligen Basis-Modus das Präfix Ob bzw. Oh verwendet werden. Eine Zahl ohne Präfix wird als dezimal behandelt (Basis 10).

Die Ergebnisse werden im jeweiligen Basis-Modus angezeigt.

Im Bin-Modus:		
0b10+0hF+10	0b11011	
lm Hex-Modus:		

0h1B

TI-Nspire[™] CX II – Zeichenbefehle

Das vorliegende Dokument ergänzt das TI-Nspire™ Referenzhandbuch und das TI-Nspire™ CAS Referenzhandbuch, Alle TI-Nspire™ CX II Befehle werden in Version 5.1 des TI-Nspire™ Referenzhandbuchs und des TI-Nspire™ CAS Referenzhandbuchs ergänzt und mit ihnen veröffentlicht.

Grafikprogrammierung

In den TI-Nspire™ CX II Handhelds und TI-Nspire™ Desktop-Applikationen wurden für die Grafikprogrammierung Befehle hinzugefügt.

Die TI-Nspire™ CX II Handhelds wechseln in diesen Grafikmodus, wenn Grafikbefehle ausgeführt werden und wechseln nach Beendigung des Programms in den Kontext zurück, in dem das Programm ausgeführt wurde.

Auf dem Bildschirm wird bei Ausführung des Programms in der oberen Leiste "Wird ausgeführt..." angezeigt. Bei Beendigung des Programms wird "Beendet" angezeigt. Durch Drücken einer beliebigen Taste verlässt das System den Grafikmodus.

- Der Wechsel zum Grafikmodus wird automatisch ausgelöst, wenn bei Ausführung des TI-Basic-Programms einer der Zeichenbefehle (Grafikbefehle) erkannt wird.
- Dieser Wechsel findet nur dann statt, wenn ein Programm in Calculator ausgeführt wird bzw. in Scratchpad in einem Dokument oder Taschenrechner.
- Der Wechsel vom Grafikmodus weg wird bei Programmbeendigung ausgeführt.
- Der Grafikmodus ist nur in der TI-Nspire™ CX II Handheld- und Desktop-TI-Nspire™ CX II Handheld-Ansicht verfügbar. Das bedeutet, dass dieser in der PC-Dokumentenansicht weder auf dem Desktop noch in iOS verfügbar ist.
 - Bei Erkennen eines Grafikbefehls während der Ausführung eines TI-Basic-Programms in einem falschen Kontext wird eine Fehlermeldung angezeigt und das TI-Basic-Programm beendet.

Grafikbildschirm

Der Grafikbildschirm enthält oben eine Kopfzeile, in die durch Grafikbefehle nicht geschrieben werden kann.

Der Zeichenbereich des Grafikbildschirms wird bei Initialisierung des Grafikbildschirms entfernt (Farbe = 255,255,255).

Grafikbildschirm	Standard
Höhe	212
Breite	318
Farbe	Weiß: 255,255,255

Standardansicht und Einstellungen

- Die Statussymbole in der oberen Symbolleiste (Batteriestatus, Prüfungsmodus-Status, Netzwerkanzeige usw.) sind bei Ausführung eines Grafikprogramms nicht sichtbar.
- Standardzeichenfarbe: Schwarz (0,0,0)
- Standard-Stiftstil normal, geglättet
 - Dicke: 1 (dünn), 2 (normal), 3 (dick)
 - Stil 1 = (durchgängig), 2 = (gepunktet), 3 = (gestrichelt)
- Alle Zeichenbefehle verwenden die aktuellen Farb- und Stifteinstellungen; entweder Standardwerte oder solche, die über TI-Basic-Befehle eingestellt wurden.
- Die Schriftgröße ist unveränderlich.
- Jede Ausgabe in einem Grafikbildschirm wird in einem Zuschneidefenster gezeichnet, das die Größe des Grafikfenster-Zeichenbereichs hat. Jede Zeichnungsausgabe, die sich über dieses Zuschneide-Grafikfenster hinaus erstreckt. wird nicht gezeichnet. Es wird keine Fehlermeldung angezeigt.
- Alle X-Y-Koordinaten, die für Zeichenbefehle angegeben werden, sind derart definiert, dass sich (0,0) in der oberen linken Ecke des Zeichenbereichs des Grafikbildschirms befindet.

Ausnahmen:

- DrawText verwendet für den Text die Koordinaten als untere linke Ecke des begrenzenden Rechtecks.
- SetWindow verwendet die untere linke Ecke des Bildschirms.
- Alle Parameter für die Befehle können als Ausdrücke bereitgestellt werden, die eine Zahl ergeben, die dann auf die nächste Ganzzahl aufgerundet wird.

Fehlermeldungen des Grafikbildschirms

Schlägt die Validierung fehl, wird eine Fehlermeldung angezeigt.

Fehlermeldung	Beschreibung	Ansicht
Fehler Syntax	Wenn bei der Syntaxprüfung Syntaxfehler festgestellt werden, wird eine Fehlermeldung angezeigt und versucht, den Cursor nahe dem ersten Fehler zu platzieren, sodass Sie ihn korrigieren können.	Error Syntax
Fehler Zu wenig Argumente	Der Funktion oder dem Befehl fehlen ein oder mehr Argumente	Error Too few arguments The function or command is missing one or more arguments. OK
Fehler Zu viele Argumente	Die Funktion oder der Befehl enthält zu viele Argumente und kann nicht ausgewertet werden.	Too many arguments The function or command contains an excessive number of arguments and cannot be evaluated. OK
Fehler Ungültiger Datentyp	Ein Argument weist einen falschen Datentyp auf.	Error Invalid data type An argument is of the wrong data type. OK

Im Grafikmodus ungültige Befehle

Einige Befehle sind unzulässig, sobald das Programm in den Grafikmodus wechselt. Stößt das System im Grafikmodus auf solche Befehle, wird ein Fehler angezeigt und das Programm beendet.

Unzulässiger Befehl	Fehlermeldung
Request	Anfrage kann nicht im Grafikmodus ausgeführt werden
RequestStr	RequestStr kann im Grafikmodus nicht ausgeführt werden
Text	Text kann im Grafikmodus nicht ausgeführt werden

Die Befehle, mit denen Text im Calculator gedruckt wird – disp und dispAt – sind im Grafikkontext unterstützte Befehle. Der Text dieser Befehle wird an den Calculator-Bildschirm (nicht an den Grafikbildschirm) gesendet und ist nach der Beendigung des Programms sichtbar. Das System wechselt anschließend zurück zur Calculator App.

ΓI-Nspire™ CX II – Zeichenbefehle

Löschen (Clear) Katalog > 🕎 Clear x, y, Breite, Höhe Löschen Löscht den gesamten Bildschirm Löscht den gesamten Bildschirm, wenn keine Parameter angegeben wurden. Clear 10,10,100,50 Werden x, y, Breite und Höhe angegeben, Löscht eine Rechtecksfläche mit der wird das durch die Parameter definierte oberen linken Ecke in (10, 10), Rechteck gelöscht. einer Breite 100 und einer Höhe 50

DrawArc

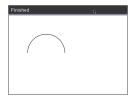
Katalog > 🔯

DrawArc x, y, Breite, Höhe, startAngle, *arcAngle*

Zeichnet einen Bogen innerhalb eines definierten begrenzenden Rechtecks mit dem angegebenen Start- und Bogenwinkel.

x, y: obere linke Koordinate des begrenzenden Rechtecks

Breite, Höhe: Abmessungen des begrenzenden Rechtecks


Der "Bogenwinkel" definiert die Ausbiegung des Bogens.

Diese Parameter können als Ausdrücke bereitgestellt werden, die eine Zahl ergeben, die dann auf die nächste Ganzzahl gerundet wird.

DrawArc 20,20,100,100,0,90

DrawArc 50,50,100,100,0,180

Siehe auch: FillArc

DrawCircle


Katalog > 😰 **CXII**

DrawCircle *x*, *y*, *Radius*

x, y: Koordinate des Mittelpunkts

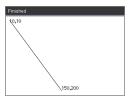
Radius: Radius des Kreises

DrawCircle 150,150,40

Siehe auch: FillCircle

DrawLine

Katalog > 🔯


DrawLine x1, y1, x2, y2

Zeichnet eine Linie von x1, y1, x2, y2 aus.

Ausdrücke, die eine Zahl ergeben, die dann auf die nächste Ganzzahl gerundet wird.

Bildschirmgrenzen: Wenn aufgrund der angegebenen Koordinaten ein Teil der Zeile außerhalb des Grafikbildschirms gezeichnet wird, dann wird dieser Teil der Linie abgeschnitten und keine Fehlermeldung angezeigt.

DrawLine 10,10,150,200

DrawPoly

Es gibt zwei Varianten der Befehle:

DrawPoly xlist, ylist

oder

DrawPoly x1, y1, x2, y2, x3, y3...xn, yn

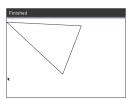
Hinweis: DrawPoly xlist, ylist

Form (Shape) verbindet x1, y1 mit x2, y2, x2,

v2 mit x3, v3 usw.

Hinweis: DrawPoly x1, y1, x2, y2, x3, v3...xn, vn

xn, yn wird **NICHT** automatisch mit x1, y1verbunden.


Ausdrücke, die eine Liste von realen Float-Variablen ergeben xlist, ylist

Ausdrücke, die eine reale einzelne Float-Variable ergeben x1, y1...xn, yn = Koordinaten fürPolygoneckpunkte

xlist:={0,200,150,0} ylist:={10,20,150,10}

DrawPoly xlist, ylist

DrawPoly 0,10,200,20,150,150,0,10

Hinweis: DrawPoly:

Eingabegrößenabmessungen (Breite/Höhe) relativ zu gezeichneten Linien.

Die Zeilen werden in einem begrenzenden Rechteck um die angegebene Koordinate gezeichnet, und Abmessungen wie beispielsweise die tatsächliche Größe des gezeichneten Polygons sind größer als die

Breite und Höhe.

Siehe auch: FillPolv

DrawRect

Katalog > 🗐

DrawRect x, y, Breite, Höhe

x. v: Obere linke Koordinate des Rechtecks

Breite, Höhe: Breite und Höhe des Rechtecks. (Das Rechteck wird von der Startkoordinate ausgehend nach unten und nach rechts gezeichnet.)

Hinweis: Die Zeilen werden in einem begrenzenden Rechteck um die angegebene Koordinate gezeichnet, und Abmessungen wie beispielsweise die tatsächliche Größe des gezeichneten Rechtecks sind größer als die angezeigte Breite und Höhe.

Siehe auch: FillRect

DrawRect 25,25,100,50

DrawText

Katalog > 🗐

DrawText x, y, exprOrString1 [,exprOrString2]...

x, y: Koordinaten der Textausgabe

Zeichnet den Text in *exprOrString* an der angegebenen x--y-Koordinatenposition.

Die Regeln für exprOrString sind die gleichen wie für Disp – DrawText kann mehrere Argumente akzeptieren.

DrawText 50,50, "Hallo Welt"

٠	ΤI	_^		n	ir	οтм	CX	11	_	70	ic	ha	n	h	of	6	hl	۵
п	"	-1	٧.	SU	111	Р.	L.A	11	_	ZP	π.	пe	III	01	21	\mathbf{e}	Ш	۳

FillArc

Katalog > 🕮

FillArc x, y, Breite, Höhe startAngle, *arcAngle*

x, y: obere linke Koordinate des begrenzenden Rechtecks

Innerhalb des definierten begrenzenden Rechtecks mit den angegeben Start- und Bogenwinkeln einen Bogen zeichnen und füllen.

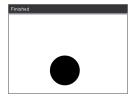
Die Standardfüllfarbe ist Schwarz, Die Füllfarbe kann mit dem SetColor-Befehl eingestellt werden.

Der "Bogenwinkel" definiert die Ausbiegung des Bogens.

FillArc 50,50,100,100,0,180

FillCircle

Katalog > 🗐 **CXII**


FillCircle x, y, Radius

x, y: Koordinate des Mittelpunkts

Einen Kreis mit angegebenen Mittelpunkt und Radius zeichnen und füllen.

Die Standardfüllfarbe ist Schwarz, Die Füllfarbe kann mit dem SetColor-Befehl eingestellt werden.

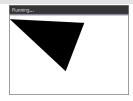
FillCircle 150,150,40

Hierl

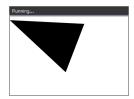
FillPoly

Katalog > 🕮

FillPoly xlist, ylist


oder

FillPoly x1, y1, x2, y2, x3, y3...xn, yn


Hinweis: Linie und Farbe werden durch SetColor und SetPen festgelegt.

xlist:={0,200,150,0} ylist:={10,20,150,10}

FillPoly xlist, ylist

FillPoly 0,10,200,20,150,150,0,10

FillRect

Katalog > 🔯

FillRect x, y, Breite, Höhe

x, y: Obere linke Koordinate des Rechtecks

Breite, Höhe: Breite und Höhe des Rechtecks

An der durch (x,y) angegebenen Koordinate mit der oberen linken Ecke ein Rechteck zeichnen und füllen

Die Standardfüllfarbe ist Schwarz. Die Füllfarbe kann mit dem SetColor-Befehl eingestellt werden.

Hinweis: Linie und Farbe werden durch SetColor und SetPen festgelegt.

FillRect 25,25,100,50

getPlatform() Katalog > 📳 getPlatform() getPlatform() "dt" Ergibt: "dt" auf Desktop-Softwareanwendungen "hh" auf TI-Nspire™ CX Handhelds "ios" auf TI-Nspire™ CX App für iPad®

PaintBuffer Katalog > [1] CXII

PaintBuffer

Farbengrafik-Puffer zum Bildschirm

Dieser Befehl wird in Verbindung mit UseBuffer verwendet, um die Geschwindigkeit der Darstellung auf dem Bildschirm zu erhöhen, wenn das Programm mehrere Grafikobjekte erzeugt. UseBuffer

For n,1,10

x:=randInt(0,300)

y:=randInt(0,200)

Radius:=randInt(10,50)

Wait 0,5

DrawCircle x,y,Radius

EndFor

PaintBuffer

Dieses Programm zeigt alle 10 Kreise

gleichzeitig an.

Wird der Befehl "UseBuffer" entfernt, wird jeder Kreis so angezeigt, wie er gezeichnet wird.

Siehe auch: UseBuffer

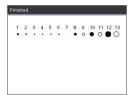
PlotXY x, y, Form

x, y: Koordinate zur Plot-Form

Form: eine Zahl zwischen 1 und 13, die die Form festlegt

- 1 Gefüllter Kreis
- 2 Leerer Kreis
- 3 Gefülltes Quadrat
- 4 Leeres Quadrat
- 5 Kreuz
- 6 Plus
- 7 Dünn
- 8 Mittelgroßer Punkt, ausgefüllt
- 9 Mittelgroßer Punkt, unausgefüllt
- 10 Großer Punkt, ausgefüllt
- 11 Großer Punkt, unausgefüllt
- 12 Größter Punkt, ausgefüllt
- 13 Größter Punkt, unausgefüllt

PlotXY 100,100,1



For n,1,13

DrawText 1+22*n,40,n

PlotXY 5+22*n,50,n

EndFor

SetColor

Katalog > 🗐 CXII

SetColor

Rot-Wert, Grün-Wert, Blau-Wert

Gültige Werte für Rot, Grün und Blau liegen zwischen 0 und 255.

Legt die Farbe für nachfolgende Draw-Befehle fest SetColor 255,0,0

DrawCircle 150,150,100

SetPen

Katalog > [] CXII

SetPen

Dicke, Stil

Dicke: 1 <= Dicke <= 3 | 1 ist am dünnsten, 3 ist am dicksten

Stil: 1 = Durchgängig, 2 = Gepunktet, 3 = Gestrichelt

Richtet den Stiftstil für nachfolgende Zeichenbefehle ein SetPen 3,3

DrawCircle 150,150,50

SetWindow

SetWindow

xMin, xMax, yMin, yMax

Richtet ein logisches Fenster ein, das dem Grafikzeichenbereich zugeordnet ist. Alle Parameter sind erforderlich.

Befindet sich der Teil des gezeichneten Objekts außerhalb des Fensters, wird die Ausgabe zugeschnitten (nicht angezeigt) und keine Fehlermeldung angezeigt. SetWindow 0,160,0,120

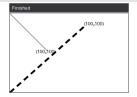
Stellt das Ausgabefenster wie folgt ein: (0,0) in der linken unteren Ecke mit einer Breite von 160 und einer Höhe von 120

DrawLine 0,0,100,100

SetWindow 0,160,0,120

SetPen 3,3

DrawLine 0,0,100,100



Ist xmin größer oder gleich xmax oder ymin größer oder gleich ymax, wird eine Fehlermeldung angezeigt.

Objekte, die vor einem SetWindow-Befehl gezeichnet wurden, werden mit der neuen Konfiguration nicht neu gezeichnet.

Verwenden Sie zum Zurücksetzen der Fensterparameter auf die Standardeinstellungen:

SetWindow 0,0,0,0

UseBuffer Katalog > 🔯

UseBuffer

Zeichnet Grafik-Buffer außerhalb des Bildschirms anstatt auf den Bildschirm (zur Leistungssteigerung)

Dieser Befehl wird in Verbindung mit PaintBuffer verwendet, um die Geschwindigkeit der Darstellung auf dem Bildschirm zu erhöhen, wenn das Programm mehrere Grafikobjekte erzeugt.

Mit UseBuffer werden alle Grafiken erst nach Ausführung des nächsten PaintBuffer-Befehls angezeigt.

UseBuffer muss lediglich einmal im Programm aufgerufen werden, d. h. nicht bei jeder Verwendung von PaintBuffer ist ein entsprechender UseBuffer erforderlich.

Siehe auch: PaintBuffer

UseBuffer

For n,1,10

x:=randInt(0,300)

y:=randInt(0,200)

Radius:=randInt(10,50)

Wait 0,5

DrawCircle x,y,Radius

EndFor

PaintBuffer

Dieses Programm zeigt alle 10 Kreise gleichzeitig an.

Wird der Befehl "UseBuffer" entfernt, wird jeder Kreis so angezeigt, wie er gezeichnet wird.

Leere (ungültige) Elemente

Bei der Analyse von Daten der realen Welt liegt möglicherweise nicht immer ein vollständiger Datensatz vor. TI-Nspire™ lässt leere bzw. ungültige Datenelemente zu, sodass Sie mit den nahezu vollständigen Daten fortfahren können anstatt von vorn anfangen oder unvollständige Fälle verwerfen zu müssen.

Ein Beispiel für Daten mit leeren Elementen finden Sie im Kapitel Lists & Spreadsheet unter "Tabellendaten grafisch darstellen".

Mit der Funktion delVoid() können Sie leere Elemente aus einer Liste löschen. Die Funktion isVoid() sucht nach leeren Elementen. Einzelheiten finden Sie unter delVoid(), Seite 43. und isVoid(). Seite 84.

Hinweis: Um ein leeres Element manuell in einen mathematischen Ausdruck einzugeben, geben Sie " " oder das Schlüsselwort void ein. Das Schlüsselwort void wird bei der Auswertung des Ausdrucks automatisch in das Symbol " "konvertiert. Um "" auf dem Handheld einzugeben, drücken Sie 👊 🖵.

Kalkulationen mit ungültigen Elementen

Bei der Mehrzahl aller Kalkulationen, die ein ungültiges Element enthalten, wird das Ergebnis ebenfalls ungültig sein. Sonderfälle sind nachstehend aufgeführt.

	_
gcd(100,_)	_
3+_	_
{5,_,10}-{3,6,9}	{2,_,1}

Listenargumente, die ungültige Elemente enthalten

Die folgenden Funktionen und Befehle ignorieren (überspringen) ungültige Elemente, die in Listenargumenten gefunden werden.

count, countIf, cumulativeSum, freqTable list, frequency, max, mean, median, product, stDevPop, stDevSamp, sum, sumIf, varPop und varSamp sowie Regressionskalkulationen, OneVar, TwoVar und FiveNumSummary Statistiken, Konfidenzintervalle und statistische Tests

sum({2,_,3,5,6.6})	16.6
median({1,2,_,_,3})	2
cumulativeSum($\{1,2,4,5\}$)	{1,3,_,7,12}
$ \begin{array}{c} \text{cumulativeSum} \begin{bmatrix} 1 & 2 \\ 3 & - \\ 5 & 6 \end{bmatrix} \end{array} $	$\begin{bmatrix} 1 & 2 \\ 4 & - \\ 9 & 8 \end{bmatrix}$

Listenargumente, die ungültige Elemente enthalten

SortA und SortD verschieben alle ungültigen Elemente im ersten Argument nach unten.

{5,4,3,_,1} → list1	{5,4,3,_,1}
$\{5,4,3,2,1\} \rightarrow list2$	{5,4,3,2,1}
SortA list1,list2	Done
list1	{1,3,4,5,_}
list2	{1,3,4,5,2}

$\{1,2,3,_,5\} \rightarrow list1$	{1,2,3,_,5}
$\{1,2,3,4,5\} \rightarrow list2$	{1,2,3,4,5}
SortD list1,list2	Done
list1	{5,3,2,1,_}
list2	{5,3,2,1,4}

In Regressionen sorgt ein ungültiges Element in einer Liste X oder Y dafür. dass auch das entsprechende Element im Residuum ungültig ist.

Eine ausgelassene Kategorie in Regressionen sorgt dafür, dass das entsprechende Element im Residuum ungültig ist.

<i>11</i> :={1,3,4,5}: <i>12</i> :={2,3,5,6.6}	{2,3,5,6.6}
cat:={ "M", "M", "F", "F" }: incl:=	{ "F" }
	{"F"}
LinRegMx 11,12,1,cat,incl	Done
stat.Resid	{_,_,0.,0.}
stat.XReg	{_,_,4.,5.}
stat.YReg	{_,_,5.,6.6}
stat.FreqReg	{_,_,1.,1.}

Eine Häufigkeit von 0 in Regressionen führt dazu, dass das entsprechende Element im Residuum ungültig ist.

11:={1,3,4,5}: 12:=	{2,3,5,6.6}	{2,3,5,6.6}
LinRegMx 11,12,{ 1	,0,1,1}	Done
stat.Resid {0	.069231,_,-0.2	276923,0.207692}
stat.XReg		{1.,_,4.,5.}
stat.YReg		{2.,_,5.,6.6}
stat.FreqReg		{1.,_,1.,1.}

Tastenkürzel zum Eingeben mathematischer Ausdrücke

Tastenkürzel ermöglichen es Ihnen, Elemente mathematischer Ausdrücke über die Tastatur einzugeben anstatt über den Katalog oder die Sonderzeichenpalette. Um beispielsweise den Ausdruck $\sqrt{6}$ einzugeben, können Sie **sqrt(6)** in die Eingabezeile eingeben. Wenn Sie enter drücken, ändert sich der Ausdruck sqrt(6) in $\sqrt{6}$. Einige Tastenkürzel sind sowohl für die Eingabe über das Handheld als auch über die Computertastatur nützlich. Andere sind hauptsächlich für die Computertastatur hilfreich.

Von Handheld oder Computertastatur

Sonderzeichen:	Tastenkürzel:
π	pi
θ	theta
∞	infinity
≤	<=
2	>=
≠	/=
⇒ (logische Implikation)	=>
⇔ (logische doppelte Implikation, XNOR)	<=>
→ (Operator speichern)	=:
(Absolutwert)	abs ()
√()	sqrt()
Σ () (Vorlage Summe)	sumSeq()
Π() (Vorlage Produkt)	prodSeq()
sin ⁻¹ (), cos ⁻¹ (),	arcsin(), arccos(),
ΔListe()	deltaList()

Von der Computertastatur

Sonderzeichen:	Tastenkürzel:
i (imaginäre Konstante)	@i
e (natürlicher Logarithmus zur Basis e)	@e
E (wissenschaftliche Schreibweise)	@ E
T (Transponierte)	@t

Sonderzeichen:	Tastenkürzel:
r (Bogenmaß)	@r
° (Grad)	@d
g (Neugrad)	@g
∠ (Winkel)	@<
▶ (Umwandlung)	@>
▶Decimal, ▶approxFraction() usw.	<pre>@>Decimal, @>approxFraction() usw.</pre>

Auswertungsreihenfolge in EOS™ (Equation Operating System)

Dieser Abschnitt beschreibt das Equation Operating System (EOS™), das von der TI-Nspire™ Technologie genutzt wird. Zahlen, Variablen und Funktionen werden in einer einfachen Abfolge eingegeben. Die EOS™ Software wertet Ausdrücke und Gleichungen anhand der gesetzten Klammern und der im Folgenden beschriebenen Priorität der Operatoren aus.

Auswertungsreihenfolge

Ebene	Operator	
1	Klammern: rund (), eckig [], geschweift { }	
2	Umleitung (#)	
3	Funktionsaufrufe	
4	Postfix-Operatoren: Grad-Minuten-Sekunden ($^{\circ}$,',"), Fakultät (!), Prozent ($^{\circ}$), Bogenmaß ($^{\circ}$), Tiefstellen ([]), Transponieren ($^{\circ}$)	
5	Potenzieren, Potenzoperator (^)	
6	Negation (-)	
7	Stringverkettung (&)	
8	Multiplikation (•), Division (/)	
9	Addition (+), Subtraktion (-)	
10	Gleichheitsbeziehungen: gleich (=), ungleich (≠ oder /=), kleiner als (<), kleiner oder gleich (≤ oder <=), größer als (>), größer oder gleich (≥ oder >=)	
11	Logisches Nicht: not	
12	Logische Konjunktion: and	
13	Logisch or	
14	xor, nor, nand	
15	logische Implikation, (\Rightarrow)	
16	Logische doppelte Implikation, XNOR (\Leftrightarrow)	
17	womit-Operator (" ")	
18	Speichern (→)	

Klammern (rund, eckig, geschweift)

Alle Berechnungen, die in Klammern – runde, eckige oder geschweifte – gesetzt sind, werden als erste ausgewertet. Ein Beispiel: Im Ausdruck 4(1+2) wertet die EOS™ Software zunächst 1+2 aus, da dieser Teil des Ausdrucks in Klammern steht. Das Ergebnis 3 wird dann mit 4 multipliziert.

Die Anzahl der öffnenden und schließenden Klammern eines jeden Typs muss innerhalb eines Ausdrucks oder einer Gleichung jeweils übereinstimmen. Anderenfalls wird eine Fehlermeldung mit dem fehlenden Element angezeigt. Beim Ausdruck (1+2)/(3+4 erscheint beispielsweise die Fehlermeldung ") fehlt".

Hinweis: In der TI-Nspire™ Software können Sie Ihre eigenen Funktionen definieren. Daher wird eine Variable, auf die ein Ausdruck in Klammern folgt, als Funktionsaufruf und nicht wie sonst implizit als Multiplikation interpretiert. Der Ausdruck a(b+c) steht beispielsweise für den Wert der Funktion a mit dem Argument b+c. Um den Ausdruck b+c mit der Variablen a zu multiplizieren, verwenden Sie die explizite Multiplikation: a* (b+c).

Umleitung

Der Umleitungsoperator # wandelt eine Zeichenfolge (String) in einen Variablen- oder Funktionsnamen um. Mit #("x"&"y"&"z") wird beispielsweise der Variablenname xyz erstellt. Mithilfe der Umleitung können Sie auch Variablen aus einem Programm heraus erstellen und modifizieren. Beispiel: Wenn 10→r und "r"→s1, dann #s1=10.

Postfix-Operatoren

Postfix-Operatoren sind Operatoren, die direkt nach einem Argument stehen, zum Beispiel 5!, 25% oder 60°15' 45". Argumente, auf die ein Postfix-Operator folgt, werden auf der vierten Prioritätsebene ausgewertet. Beispiel: Im Ausdruck 4^3! wird zuerst 3! ausgewertet. Das Ergebnis 6 wird dann als Exponent für 4 verwendet, und das Endergebnis ist 4096.

Potenz

Potenzen (^) und elementweise Potenzen (.^) werden von rechts nach links ausgewertet. Der Ausdruck 2^3^2 wird zum Beispiel wie 2^(3^2) ausgewertet, hat also das Ergebnis 512. Er unterscheidet sich damit vom Ausdruck (2^3)^2 mit dem Ergebnis 64.

Negation

Zum Eingeben einer negativen Zahl drücken Sie (-) und geben dann die Zahl ein. Postfix-Operatoren und Potenzen werden vor der Negation ausgewertet. Das Ergebnis von -x2 ist zum Beispiel eine negative Zahl; -92 = -81. Um eine negative Zahl zu quadrieren, verwenden Sie Klammern: (-9)2, Ergebnis 81.

Einschränkung ("|")

Das Argument nach dem womit-Operator "| " stellt eine Reihe von Einschränkungen dar, die beeinflussen, wie das Argument vor dem Operator ausgewertet wird.

TI-Nspire CX II – TI-Basic Programmierfunktionen

Automatisches Einrücken im Programmierungseditor

Der TI-Nspire™ Programmeditor rückt Anweisungen nun automatisch in einem Blockbefehl ein.

Blockbefehle sind If/EndIf, For/EndFor, While/EndWhile, Loop/EndLoop, Try/EndTry.

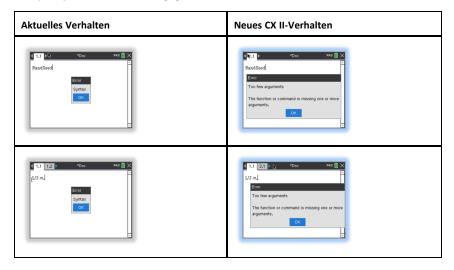
Der Editor stellt in einem Blockbefehl Programmbefehlen automatisch Leerstellen voran. Der Schließbefehl des Blocks wird am Öffnungsbefehl ausgerichtet.

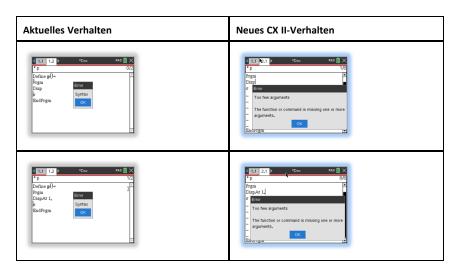
Das unten stehende Beispiel zeigt das automatische Einrücken in Befehlen mit verschachtelten Blöcken.

Bei Codefragmenten, die kopiert und eingefügt werden, wird deren ursprüngliche Einrückung beibehalten.

Wird ein in einer früheren Version der Software erstelltes Programm geöffnet, wird die ursprüngliche Einrückung beibehalten.

Verbesserte Fehlermeldungen für TI-Basic


Fehler


Fehlermeldungen	Neue Meldung
Fehler in der Bedingungsanweisung (If/While)	Eine bedingte Anweisung hat RICHTIG oder FALSCH nicht aufgeklärt. HINWEIS: Durch die Platzierung des Cursors auf die Linie mit dem Fehler muss nicht mehr angegeben werden, ob der Fehler ein "If"-Ausdruck oder ein "While"-Ausdruck ist.
EndIf fehlt	Erwartete EndIf , fand aber eine andere End- Anweisung
EndFor fehlt	Erwartete EndFor , fand aber eine andere End- Anweisung
EndWhile fehlt	Erwartete EndWhile , fand aber eine andere End-Anweisung

Fehlermeldungen	Neue Meldung
EndLoop fehlt	Erwartete EndLoop , fand aber eine andere End-Anweisung
EndTry fehlt	Erwartete EndTry , fand aber eine andere End-Anweisung
"Then" nach If <condition> nicht angegeben</condition>	IfThen fehlt
"Then" nach Elself < condition > nicht angegeben	Then fehlt in Block: Elself.
Wenn " Then" , " Else " und " Elself " außerhalb der Steuerblöcke gefunden wurden	Else ungültig außerhalb der Blöcke: IfThenEndIf oder TryEndTry
"Elself" erscheint außerhalb des "IfThenEndlf"-Blocks	Elself ungültig außerhalb des Blocks: IfThenEndIf
"Then" erscheint außerhalb des "IfEndIf"- Blocks	Then ungültig außerhalb des Blocks: IfEndIf

Syntaxfehler

Wenn Befehle, die ein oder mehrere Argumente erfordern, mit einer unvollständigen Argumentenliste aufgerufen werden, wird anstelle eines "Syntax"-Fehlers ein "Zu wenige Argumente"-Fehler ausgegeben.

Hinweis: Wenn auf eine unvollständige Argumentenliste kein Komma folgt, lautet die Fehlermeldung: "zu wenig Argumente". Bei früheren Versionen war das genauso.

Konstanten und Werte

Die folgende Tabelle führt die Konstanten und ihre Werte auf, die verfügbar sind, wenn eine Einheitenumrechnung durchgeführt wird. Diese können manuell eingegeben werden oder aus der Liste der Konstanten in Hilfsfunktionen > Einheitenumrechnungen ausgewählt werden (Beim Handheld: Drücken Sie 🕮 3).

Konstante	Name	Wert
_c	Lichtgeschwindigkeit	299792458 _m/_s
_Cc	Coulombsche Konstante	8987551787,3682 _m/_F
_Fc	Faraday-Konstante	96485,33289 _coul/_mol
_g	Erdbeschleunigung	9,80665 _m/_s ²
_Gc	Gravitationskonstante	6,67408E-11 _m ³ /_kg/_s ²
_h	Plancksche Konstante	6,626070040E-34 _J _s
_k	Boltzmann-Konstante	1,38064852E-23 _J/_°K
_μ0	Permeabilität des Vakuums	1,2566370614359E-6 _N/_A ²
_µb	Bohr-Magneton	9,274009994E-24 _J _m ² /_Wb
_Me	Ruhemasse des Elektrons	9,10938356E-31 _kg
_Μμ	Myonmasse	1,883531594E-28 _kg
_Mn	Ruhemasse des Neutrons	1,674927471E-27 _kg
_Mp	Ruhemasse des Protons	1,672621898E-27 _kg
_Na	Avogadro-Zahl	6,022140857E23 /_mol
_q	Elektronenladung	1,6021766208E-19 _coul
_Rb	Bohr-Radius	5,2917721067E-11 _m
_Rc	Molare Gaskonstante	8,3144598 _J/_mol/_°K
_Rdb	Rydberg-Konstante	10973731,568508/_m
_Re	Elektronenradius	2,8179403227E-15 _m
_u	Atommasse	1,660539040E-27 _kg
_Vm	Molvolumen	2,2413962E-2 _m ³ /_mol
_£0	Permittivität des Vakuums	8,8541878176204E-12 _F/_m
_σ	Stefan-Boltzmann-Konstante	5,670367E-8 _W/_m ² /_°K ⁴
_\dphi0	Magnetisches Flussquantum	2,067833831E-15 _Wb

Fehlercodes und -meldungen

Wenn ein Fehler auftritt, wird sein Code der Variablen *errCode* zugewiesen. Benutzerdefinierte Programme und Funktionen können errCode auswerten, um die Ursache eines Fehlers zu bestimmen. Ein Beispiel für die Benutzung von *errCode* finden Sie als Beispiel 2 unter dem Befehl Versuche (Try) (Seite 179).

Hinweis: Einigen Fehlerbedingungen gelten nur für TI-Nspire™ CAS Produkte, andere gelten nur für TI-Nspire™ Produkte.

Fehlercode	Beschreibung
10	Funktion ergab keinen Wert
20	Test ergab nicht WAHR oder FALSCH.
	Generell können nicht definierte Variablen nicht verglichen werden. Beispielsweise würde der Test 'If a <b' a<br="" auslösen,="" diesen="" entweder="" fehler="" wenn="">oder b zum Zeitpunkt der Ausführung der If-Anweisung nicht definiert ist.</b'>
30	Argument darf kein Verzeichnisname sein.
40	Argumentfehler
50	Argumente passen nicht
	Zwei oder mehr Argumente müssen vom gleichen Typ sein.
60	Argument muss Boolescher Ausdruck oder ganze Zahl sein
70	Argument muss Dezimalzahl sein
90	Argument muss Liste sein
100	Argument muss Matrix sein
130	Argument muss String sein
140	Argument muss Variablenname sein.
	Vergewissern Sie sich, dass der Name:
	nicht mit einer Ziffer beginnt
	keine Leerzeichen oder Sonderzeichen enthält
	keine unzulässigen Unterstriche oder Punkte enthält
	die maximale Zeichenlänge nicht überschreitet
	Weitere Einzelheiten finden Sie im Abschnitt Calculator in der Dokumentation.
160	Argument muss Ausdruck sein
165	Batteriespannung zu niedrig zum Senden/Empfangen
	Setzten Sie vor dem Senden oder Empfangen neue Batterien ein.
170	Grenze

Fehlercode	Beschreibung
	Um das Suchintervall zu definieren, muss die untere Grenze kleiner sein als die obere Grenze.
180	Abbruch
	Die Taste esc oder fan wurde gedrückt, während eine lange Berechnung oder ein Programm ausgeführt wurde.
190	Zirkuläre Definition
	Diese Meldung wird angezeigt, um zu verhindern, dass durch unendliches Ersetzen von Variablenwerten bei der Vereinfachung der Platz im Hauptspeicher nicht ausreicht. Dieser Fehler wird beispielsweise durch 'a+1->a' ausgelöst, wenn a eine nicht definierte Variable ist.
200	Zusammengesetzter Ausdruck ungültig
	Diese Fehlermeldung würde zum Beispiel durch 'solve(3x^2-4=0,x) x<0 or x>5' ausgelöst werden, weil die Einschränkung durch "oder (or)" anstatt "und (and)" getrennt wird.
210	Ungültiger Datentyp
	Ein Argument weist einen falschen Datentyp auf.
220	Abhängiger Grenzwert
230	Dimension
	Ein Listen- oder Matrixindex ist ungültig. Wenn beispielsweise die Liste {1,2,3,4} in L1 gespeichert wird, ist L1[5] ein Dimensionsfehler, weil L1 nur vier Elemente enthält.
235	Dimensionsfehler. Nicht genügend Elemente in den Listen.
240	Dimensionsfehler
	Zwei oder mehr Argumente müssen die gleiche Dimension haben. So ist beispielsweise [1,2]+[1,2,3] ein Dimensionsfehler, weil die Matrizen eine unterschiedliche Anzahl von Elementen enthalten.
250	Division durch Null
260	Bereichsfehler
	Ein Argument muss in einem festgelegten Bereich sein. rand(0) ist zum Beispiel nicht gültig.
270	Variablenname doppelt vergeben
280	Else und Elself außerhalb IfEndIf-Block ungültig
290	Zu EndTry fehlt passende Else-Anweisung

Fehlercode	Beschreibung
295	Zu viele Iterationen
300	2- oder 3-elementige Liste bzw. Matrix erwartet
310	Das erste Argument von nSolve muss eine Gleichung in einer einzigen Variablen sein. Es darf keine andere Variable ohne Wert außer der interessierenden Variablen enthalten.
320	1. Argument von Löse oder cLöse muss Gleichung/Ungleichung sein
	Löse(3x-4,x) ist beispielsweise ungültig, weil das erste Argument keine Gleichung ist.
345	Einheiten passen nicht zusammen
350	Index nicht im gültigen Bereich
360	Umleitungs-String kein gültiger Variablenname
380	Undefinierte Antw
	Entweder hat die vorangegangene Berechnung keine Antw (Ans) erzeugt oder es fand keine vorangegangene Berechnung statt.
390	Zuweisung ungültig
400	Zuweisungswert ungültig
410	Befehl ungültig
430	Ungültig für aktuelle Modus-Einstellungen
435	Schätzwert ungültig
440	Implizierte Multiplikation ungültig
	Beispielsweise ist 'x(x+1)' ungültig, während 'x*(x+1)' eine korrekte Syntax ist. So wird eine Verwechslung zwischen impliziter Multiplikation und Funktionsaufrufen vermieden.
450	In Funktion oder aktuellem Ausdruck ungültig
	In einer benutzerdefinierten Funktion sind nur bestimmte Befehle zulässig.
490	In TryEndTry Block ungültig
510	Liste oder Matrix ungültig
550	Ungültig außerhalb Funktion oder Programm
	Einige Befehle sind nur in einer Funktion oder einem Programm gültig. Beispielsweise kann Lokal (Local) nur in einer Funktion oder einem Programm verwendet werden.
560	Nur in LoopEndLoop-, ForEndFor- oder WhileEndWhile-Block gültig

Fehlercode	Beschreibung
	Beispielsweise ist der Befehl Abbruch (Exit) nur in diesen Schleifenblöcken gültig.
565	Nur in einem Programm gültig
570	Ungültiger Pfadname
	\var ist beispielsweise ungültig.
575	Polarkomplex ungültig
580	Programmaufruf ungültig
	Programme können nicht innerhalb von Funktionen oder Ausdrücken wie z.B. '1+p(x)' aufgerufen werden, wenn p ein Programm ist.
600	Tabelle ungültig
605	Verwendung der Einheiten ungültig
610	Variablenname in Lokal-Anweisung ungültig
620	Variablen- bzw. Funktionsname ungültig
630	Variablenverweis ungültig
640	Vektorsyntax ungültig
650	Kabelübertragung gestört
	Eine Übertragung zwischen zwei Geräten wurde nicht abgeschlossen. Überprüfen Sie, dass das Kabel an beiden Seiten fest angeschlossen ist.
665	Diagonalisierung der Matrix nicht möglich
670	Wenig Speicher
	1. Löschen Sie Daten in diesem Dokument
	2. Speichern und schließen Sie dieses Dokument
	Wenn 1 und 2 fehlschlagen, nehmen Sie die Batterien heraus und setzen Sie sie wieder ein
672	Ressourcenauslastung
673	Ressourcenauslastung
680	fehlt (
690	fehlt)
700	fehlt "
710	fehlt]

Fehlercode	Beschreibung
720	fehlt }
730	Anfang oder Ende des Blocks fehlt
740	Then im IfEndIf-Block fehlt
750	Name verweist nicht auf Funktion oder Programm
765	Keine Funktionen ausgewählt
780	Keine Lösung gefunden
800	Nicht-reelles Ergebnis
	Wenn die Software beispielsweise in der Einstellung Reell (Real) ist, ist $\sqrt{\text{(-1)}}$ ungültig.
	Um komplexe Berechnungen zu ermöglichen, ändern Sie die Moduseinstellung 'Reell oder Komplex' (Real or Complex) in KARTESISCH (RECTANGULAR) oder POLAR (POLAR).
830	Überlauf
850	Programm nicht gefunden
	Ein Programmverweis in einem anderen Programm wurde während der Ausführung im angegebenen Pfad nicht gefunden.
855	Zufallsfunktionen sind im Graphikmodus nicht zulässig
860	Rekursion zu tief
870	Reservierter Name oder Systemvariable
900	Argumentfehler
	Das Median-Median-Modell konnte nicht auf den Datensatz angewendet werden.
910	Syntaxfehler
920	Text nicht gefunden
930	Zu wenig Argumente
	Der Funktion oder dem Befehl fehlen ein oder mehr Argumente.
940	Zu viele Argumente
	Der Ausdruck oder die Gleichung enthält eine überschüssige Anzahl von Argumenten und kann nicht ausgewertet werden.
950	Zu viele Indizierungen
955	Zu viele undefinierte Variable

Fehlercode	Beschreibung
960	Variable ist nicht definiert
	Der Variablen wurde kein Wert zugewiesen. Verwenden Sie einen der folgenden Befehle: ■ sto →
	• :=
	Definiere
	um Variablen Werte zuzuweisen.
965	Betriebssystem nicht lizensiert
970	Variable ist aktiv, daher keine Verweise oder Änderungen zulässig
980	Variable ist geschützt
990	Ungültiger Variablenname
	Stellen Sie sicher, dass der Name die maximale Zeichenlänge nicht überschreitet
1000	Fenstervariable nicht im Bereich
1010	Zoom
1020	Interner Fehler
1030	Verletzung des Zugriffsschutzes auf geschützten Speicher
1040	Nicht unterstützte Funktion. Für diese Funktion ist ein Computer-Algebra- System erforderlich. Probieren Sie TI-Nspire™ CAS.
1045	Nicht unterstützter Operator. Für diesen Operator ist ein Computer-Algebra- System erforderlich. Probieren Sie TI-Nspire™ CAS.
1050	Nicht unterstütztes Merkmal. Für diesen Operator ist ein Computer-Algebra- System erforderlich. Probieren Sie TI-Nspire™ CAS.
1060	Das Eingabeargument muss numerisch sein. Nur Eingaben, die numerische Werte enthalten, sind zulässig.
1070	Argument der trig. Funktion ist zu groß für eine exakte Vereinfachung
1080	Keine Unterstützung von Antw (Ans). Diese Applikation unterstützt nicht Antw (Ans).
1090	Funktion ist nicht definiert. Verwenden Sie einen der folgenden Befehle: • Definiere
	• :=
	• sto →
	um eine Funktion zu definieren.

Fehlercode	Beschreibung
1100	Nicht-reelle Berechnung
	Wenn die Software beispielsweise in der Einstellung Reell (Real) ist, ist $\sqrt{\mbox{(-1)}}$ ungültig.
	Um komplexe Berechnungen zu ermöglichen, ändern Sie die Moduseinstellung 'Reell oder Komplex' (Real or Complex) in KARTESISCH (RECTANGULAR) oder POLAR (POLAR).
1110	Ungültige Grenzen
1120	Keine Zeichenänderung
1130	Argument kann weder eine Liste noch eine Matrix sein
1140	Argumentfehler
	Das erste Argument muss ein Polynomausdruck im zweiten Argument sein. Wenn das zweite Argument ausgelassen wird, versucht die Software, eine Voreinstellung auszuwählen.
1150	Argumentfehler
	Die ersten zwei Argumente müssen Polynomausdrücke im dritten Argument sein. Wenn das dritte Argument ausgelassen wird, versucht die Software, eine Voreinstellung auszuwählen.
1160	Bibliotheks-Pfadname ungültig
	Ein Pfadname muss in der Form xxx\yyy angegeben werden, wobei: Der xxx Teil kann 1 bis 16 Zeichen haben.
	Der yyy Teil kann 1 bis 15 Zeichen haben.
	Weitere Einzelheiten finden Sie im Abschnitt Bibliotheken der Dokumentation
1170	 Verwendung des Bibliotheks-Pfadnamens ungültig Ein Wert kann einem Pfadnamen nicht mit Definiere (Define), := oder sto → zugewiesen werden.
	Ein Pfadname kann nicht als lokale Variable festgelegt oder als Parameter in einer Funktions- oder Programmdefinition verwendet werden.
1180	Bibliotheks-Variablenname ungültig.
	Vergewissern Sie sich, dass der Name: • keinen Punkt enthält • nicht mit einem Unterstrich beginnt • nicht länger ist als 15 Zeichen Weitere Einzelheiten finden Sie im Abschnitt Bibliotheken der Dokumentation
1190	Bibliotheks-Dokument nicht gefunden:

Fehlercode	Beschreibung
	Vergewissern Sie sich, dass sich die Bibliothek im Ordner MyLib befindet.
	Aktualisieren Sie die Bibliotheken.
	Weitere Einzelheiten finden Sie im Abschnitt Bibliotheken der Dokumentation
1200	Bibliothaksvariable nicht gefunden:
	 Vergewissern Sie sich, dass sich die Bibliotheksvariable im ersten Problem in der Bibliothek befindet.
	Überprüfen Sie, dass die Bibliothaksvariable als LibPub oder LibPriv definiert wurde.
	Aktualisieren Sie die Bibliotheken.
	Weitere Einzelheiten finden Sie im Abschnitt Bibliotheken der Dokumentation
1210	Unzulässiger Name für Bibliothekskurzform.
	Vergewissern Sie sich, dass der Name:
	keinen Punkt enthält nicht mit einem Unterstrich beginnt
	nicht mit einem Unterstrich beginnt nicht länger ist als 16 Zeichen
	nicht reserviert ist
	Weitere Einzelheiten finden Sie im Abschnitt Bibliotheken der Dokumentation.
1220	Bereichsfehler:
	Die Funktionen tangentLine und normalLine unterstützen nur Funktionen mit reellen Werten.
1230	Bereichsfehler.
	Im Grad- und Neugradmodus werden die trigonometrischen Konversionsoperatoren nicht unterstützt.
1250	Argumentfehler
	System linearer Gleichungen verwenden.
	Beispiel für ein System zweier linearer Gleichungen mit den Variablen x und y:
	3x+7y=5
	2y-5x=-1
1260	Argumentfehler:
	Das erste Argument von nfMin oder nfMax muss ein Ausdruck in einer einzigen Variablen sein. Es darf keine andere Variable ohne Wert außer der interessierenden Variablen enthalten.
1270	Argumentfehler

Fehlercode	Beschreibung
	Ordnung der Ableitung muss gleich 1 oder 2 sein.
1280	Argumentfehler
	Verwenden Sie ein Polynom in entwickelter Form in einer Variablen.
1290	Argumentfehler
	Verwenden Sie ein Polynom in einer Variablen.
1300	Argumentfehler
	Die Koeffizienten des Polynoms müssen numerische Werte ergeben.
1310	Argumentfehler:
	Eine Funktion konnte für ein oder mehrere Argumente nicht ausgewertet werden.
1380	Argumentfehler:
	Verschachtelte Aufrufe der domain() Funktion sind nicht erlaubt.

Warncodes und -meldungen

Über die Funktion warnCodes() können Sie die bei der Auswertung eines Ausdrucks generierten Warncodes speichern. In dieser Tabelle sind alle numerischen Warncodes und die zugehörigen Meldungen aufgelistet. Ein Beispiel zum Speichern von Warncodes finden Sie in warnCodes(), Seite 188.

Warncode	Nachricht
10000	Operation könnte falsche Lösungen erzeugen.
	Falls zutreffend, verifizieren Sie die Ergebnisse mit grafischen Methoden.
10001	Differenzieren einer Gleichung kann eine falsche Gleichung erzeugen.
10002	Zweifelhafte Lösung
	Falls zutreffend, verifizieren Sie die Ergebnisse mit grafischen Methoden.
10003	Zweifelhafte Genauigkeit
	Falls zutreffend, verifizieren Sie die Ergebnisse mit grafischen Methoden.
10004	Operation könnte Lösungen unterdrücken.
	Falls zutreffend, verifizieren Sie die Ergebnisse mit grafischen Methoden.
10005	cLöse (cSolve) liefert u.U. mehrere Nullstellen.
10006	Löse (Solve) liefert u.U. mehrere Nullstellen.
	Falls zutreffend, verifizieren Sie die Ergebnisse mit grafischen Methoden.
10007	Weitere Lösungen möglich. Versuchen Sie, Ober- und Untergrenzen und/oder einen Schätzwert anzugeben.
	Beispiele mit solve(): • solve(Gleichung, Var=Schätzwert) UntereGrenze • solve(Gleichung, Var) UntereGrenze • solve(Gleichung, Var) UntereGrenze
	 solve(Gleichung, Var=Schätzwert) Falls zutreffend, verifizieren Sie die Ergebnisse mit grafischen Methoden.
10008	Definitionsbereich des Ergebnisses kann kleiner sein als der der Eingabe.
10009	Definitionsbereich des Ergebnisses kann größer sein als der der Eingabe.
10012	Nicht-reelle Berechnung
10013	∞^0 oder undef^0 durch 1 ersetzt
10014	undef^0 durch 1 ersetzt
10015	1^∞ oder 1^undef durch 1 ersetzt

Warncode	Nachricht
10016	1^undef durch 1 ersetzt
10017	Überlauf ersetzt durch ∞ oder $-\infty$
10018	Operation verlangt und liefert 64 Bit Wert.
10019	Ressourcen ausgeschöpft, Vereinfachung könnte unvollständig sein.
10020	Argument der trig. Funktion ist zu groß für eine exakte Vereinfachung.
10021	Eingabe enthält einen nicht definierten Parameter.
	Ergebnis gilt möglicherweise nicht für alle möglichen Parameterwerte.
10022	Eventuell erhalten Sie eine Lösung, wenn Sie geeignete Ober- und Untergrenzen festlegen.
10023	Skalar wurde mit Einheitsmatrix multipliziert.
10024	Ergebnis über approximierte Arithmetik erhalten.
10025	Äquivalenz kann im Modus EXAKT nicht verifiziert werden.
10026	Beschränkung kann ignoriert werden. Spezifizieren Sie eine Beschränkung in der Form "\" 'Variable MathTestSymbol Constant' oder eine Kombination dieser Formen, zum Beispiel "x<3 and x>-12".

Allgemeine Informationen

Online-Hilfe

education.ti.com/eguide

Wählen Sie Ihr Land aus, um weitere Produktinformationen zu erhalten.

Kontakt mit TI Support aufnehmen

education.ti.com/ti-cares

Wählen Sie Ihr Land aus, um auf technische und sonstige Support-Ressourcen zuzugreifen.

Service- und Garantieinformationen

education.ti.com/warranty

Wählen Sie für Informationen zur Dauer und den Bedingungen der Garantie bzw. zum Produktservice Ihr Land aus.

Eingeschränkte Garantie. Diese Garantie hat keine Auswirkungen auf Ihre gesetzlichen Rechte.

Texas Instruments Incorporated

12500 TI Blvd.

Dallas, TX 75243

Inhalt

		', Minuten-Schreibweise	218
-		+	
-, subtrahieren	198	+, addieren	197
!		· ·	
!, Fakultät	209	•	
n .		<, kleiner als	206
	240	=	
", Sekunden-Schreibweise	218	=, gleich	204
#		≠, ungleich[*]	205
#, Umleitung	215	>	
#, Umleitungsoperator	246	>, größer als	207
%		Π	
%, Prozent	204		242
*		∏, Produkt	212
* multiplizioron	199	Σ	
*, multiplizieren	199	Σ(), Summe	212
•		∑Int()	213 214
, Punkt-Subtraktion	202	√	
.*, Punkt-Multiplikation	203 203	v	
.^, Punkt-Potenz	203	٧(), Quadratwurzel	211
.+, Punkt-Addition	202	∠	
/		∠ , winkel	218
/, dividieren	200	ſ	
<u>:</u>		•	
	222	ʃ, Integral	211
:=, zuweisen	222	≤	
٨		≤, kleiner oder gleich	206
^-1, Kehrwert	219	≥	
^, Potenz	201		
1		≥, größer oder gleich	207
, womit-Operator	220		

0

🦙 in Neugrad umwandeln	75	Ob, binäre Anzeige	222
►approxFraction()	13	Oh, hexadezimale Anzeige	222
►Base10, Anzeige als ganze			
Dezimalzahl[Base10]	18	1	
►Base16, Hexadezimaldarstellung			
[Base16]	19	10^(), Potenz von zehn	219
►Base2, Binärdarstellung[Base2]	17		
►Cylind, Anzeige als Zylindervektor		A	
[Cylind (Zylindervektor)]	38	Abbruch, Exit	53
►DD, Anzeige als Dezimalwinkel[DD		Ableitungen	
(Dezimalwinkel)]	39	erste Ableitung, d()	210
►Decimal, Anzeige als Dezimalzahl		= ::	113-114
[Dezimal]	39	numerische Ableitung,	
►DMS, Anzeige als		nDerivative()	112
Grad/Minute/Sekunde[DMS		abrufen/zurückgeben	
(GMS)]	47	Variableninformationen,	
►Polar, Anzeige als Polarvektor	٠,	getVarInfo()	71
[Polar]	125	Abrufen/zurückgeben	, 1
►Rad, in Bogenmaß umwandeln	134	Variableninformationen,	
Rect, Anzeige als kartesischer	134	getVarInfo()	74
Vektor	138	abs(), Absolutwert	7
Sphere, Anzeige als sphärischer	130	Absolutwert	,
Vektor[Sphere		Vorlage für	3-4
	165	addieren, +	197
(Kugelkoordinaten)]	165	als kartesischen Vektor anzeigen,	137
=		► Rect	138
→		Amortisationstabelle, amortTbl()	7, 16
⇒ , logische Implikation	243	amortTbl(), Amortisationstabelle	7, 16
-		and, Boolean operator	8
\rightarrow		and, Boolesches und	8
		angle(), Winkel	9
→, speichern	221	ANOVA, einfache Varianzanalyse	10
		ANOVA2way, zweifache	
⇔		Varianzanalyse	10
⇔, logische doppelte Implikation[*]	209	Ans, letzte Antwort	13
, logistile doppette implikation[]	203	Antwort (letzte), Ans	13
©		Anz, Daten anzeigen	152
_		Anzeige als	
©, Kommentar	222	binär, ►Base2	17
		Dezimalwinkel, ►DD	39
•		ganze Dezimalzahl, ►Base10	18
	247	Grad/Minute/Sekunde, ►DMS	47
°, Grad-Schreibweise	217	hexadezimal, ►Base16	19
°, Grad/Minute/Sekunde	218	Polarvektor, ►Polar	125
		sphärischer Vektor, ►Sphere	165
		Zylindervektor, ► Cylind	38

Anzeige als kartesischer Vektor,		Boolean operators	
►Rect	138	and	8
Anzeige als sphärischer Vektor,		Boolesch	
►Sphere	165	und, and	8
Anzeige als Zylindervektor, ►Cylind	38	Boolesche Operatoren	
approx(), approximieren	13	⇒	208, 243
approximieren, approx()	13	⇔	209
approxRational()	14	nand	110
arccos()	14	nicht	117
arccosh()	14	nor	115
arccot()	14	oder	121
arccoth()	14	xor	190
arccsc()	14	Brüche	
arccsch()	14	propFrac (Echter Bruch)	130
arcsec()	14	Vorlage für	1
arcsech()	14		
arcsin()	15	С	
arcsinh()	15		
arctan()	15	Cdf()	57
arctanh()	15	ceiling(), Obergrenze	21
Argumente in TVM-Funktionen	183	centralDiff()	21
Arkuskosinus, cos ⁻¹ ()	29	char(), Zeichenstring	22
Arkussinus, sin ⁻¹ ()	160	ClearAZ	24
Arkustangens, tan ⁻¹ ()	173	colAugment	25
augment(), erweitern/verketten	15	colDim(), Spaltendimension der	
Ausdrücke	13	Matrix	25
String in Ausdruck, expr()	55	colNorm(), Spaltennorm der Matrix	26
Ausschließung mit " " Operator	220	conj(), Komplex Konjugierte	26
Auswertungsreihenfolge	245	constructMat(), Matrix erstellen	26
avgRC(), durchschnittliche	243	corrMat(), Korrelationsmatrix	27
Änderungsrate	15	cos ⁻¹ , Arkuskosinus	29
Anderungsrate	15	cos(), Kosinus	28
В		cosh ⁻¹ (), Arkuskosinus hyperbolicus	30
ь		cosh(), Cosinus hyperbolicus	30
Befehl Stopp	169	cot ⁻¹ (), Arkuskotangens	31
benutzerdefinierte Funktionen	40	cot(), Kotangens	31
benutzerdefinierte Funktionen und		coth ⁻¹ (), Arkuskotangens	
Programme	41	hyperbolicus	32
Bestimmtes Integral		coth(), Kotangens hyperbolicus	32
Vorlage für	6	countlf(), Elemente in einer Liste	
Bibliothek	O	bedingt zählen	33
erstelle Tastaturbefehle für		cPolyRoots()	34
Objekte	86	crossP(), Kreuzprodukt	34
binär	80	csc ⁻¹ (), inverser Kosekans	35
Anzeige, 0b	222	csc(), Kosekans	34
Darstellung, ►Base2	17	csch ⁻¹ (), inverser Kosekans	٠.
binomCdf()20,		hyperbolicus	36
binomPdf()	20	csch(), Kosekans hyperbolicus	35
	216	CubicReg, kubische Regression	36
Bogenmaß, r	210	Capiches, Radiscile Neglession	30

Cycle, Zyklus	37	Eigenwert, eigVI()	50
		eigVc(), Eigenvektor	49
D		eigVI(), Eigenwert	50
W		Einheitsmatrix, identity()	76
d(), erste Ableitung	210	Einheitsvektor, unitV()	186
Daten anzeigen, Anz	152	Einstellungen, hole aktuellen	72
Daten anzeigen, Disp	45	Elemente in einer Liste bedingt	
dbd(), Tage zwischen Daten	38	zählen, countIf()	33
Define, definiere	40	Elemente in einer Liste zählen, zähle	
Definiere	40	()	32
Definiere LibPriv (Define LibPriv)	41	else if, Elself	50
Definiere LibPub (Define LibPub)	41	else, Else	76
Definiere, Define	40	Elself, else if	50
definieren		end	50
öffentliche Funktion /		for, EndFor	59
öffentliches Programm	41	if, EndIf	76
private Funktion oder		Schleife, EndLoop	100
Programm	41	while, EndWhile	190
deltaList()	42		76
DelVar, Variable löschen	42	end if, Endlf	
delVoid(), ungültige Elemente		end while, EndWhile	190
entfernen	43	Ende	<i>-</i> •
det(), Matrixdeterminante	43	Funktion, EndFunc	64
Dezimal	43	Ende der Schleife, EndLoop	100
Anzeige als ganze Zahl, ►Base10	18	EndWhile, end while	190
Winkelanzeige, ►DD	39	Entfernen	
diag(), Matrixdiagonale	44	ungültige Elemente aus Liste	43
Diagonalform, ref()	139	EOS (Equation Operating System)	245
	44	Equation Operating System (EOS)	245
dim(), Dimension		Ergebnisse mit zwei Variablen,	
Dimension, dim()	44	TwoVar	184
DispAt	45	Ergebnisse, Statistik	166
dividieren, /	200	Ergebniswerte, Statistik	167
dotP(), Skalarprodukt	48	Ersetzung durch " " Operator	220
drehen, rotate()	146-147	erste Ableitung	
durchschnittliche Änderungsrate,		Vorlage für	5
avgRC()	15	erweitern/verketten, augment()	15
_		euler(), Euler function	51
E		Exit, Abbruch	53
e Exponent		exp(), e hoch x	54
•	2	Exponent, E	215
Vorlage für	48, 54	Exponenten	
e hoch x, e^()	-	Vorlage für	1
E, Exponent	215	Exponentielle Regression, ExpReg	55
e^(), e hoch x	48	expr(), String in Ausdruck	55
echter Bruch, propFrac	130	ExpReg, exponentielle Regression	55
eff(), Nominal- in Effektivsatz		, 5. ,	
konvertieren	49	F	
Effektivsatz, eff()	49		
Eigenvektor, eigVc()	49	factor(), Faktorisiere	56

Faktorisiere, factor()	56	holen/zurückgeben	
Fakultät, !	209	getLangInfo(), Sprachinformationen	
Fehler übergeben, ÜbgebFeh	124	abrufen/zurückgeben	71
Fehler und Fehlerbehebung		getLockInfo(), testet den Gesperrt-	
Fehler löschen, LöFehler	24	Status einer Variablen oder	
Fehler übergeben, ÜbgebFeh	124	Variablengruppe	72
Fehlercodes und -meldungen	260	getMode(), getMode-Einstellungen	72
festlegen		getNum(), Zähler	, _
Modus, setMode()	155	holen/zurückgeben	73
Fill, Matrix füllen	57	GetStr	73
Finanzfunktionen, tvmFV()	182	getType(), get type of variable	74
Finanzfunktionen, tvml()	182	getVarInfo(),	, -
Finanzfunktionen, tvmN()	182	Variableninformationen	
Finanzfunktionen, tvmPmt()	183	abrufen/zurückgeben	74
Finanzfunktionen, tvmPV()	183		204
FiveNumSummary	58	gleich, =	204
floor(), Untergrenze	59		3
Folge, seq()	153	Vorlage für	3
For	59	Vorlage für	3
for, For	59	Gleichungssystem, simult()	159
For, for	59		75
format(), Formatstring	60	Goto, gehe zu	/5
Formatstring, format()	60	Grad-/Minuten-/Sekundenanzeige,	47
fpart(), Funktionsteil	61	►DMS	47
freqTable()		Grad-Schreibweise, °	217
Frobeniusnorm, norm()	116	größer als, >	207
Füllen	233-234	Größer oder gleich, ≥	207
Func, Funktion	64	größter gemeinsamer Teiler, gcd() .	64
Func, Programmfunktion	64	Gruppen, Gesperrt-Status testen	72
Funktion beenden, EndFunc	64	Gruppen, sperren und entsperren	96, 186
Funktionen		н	
benutzerdefiniert	40	п	
Programmfunktion, Func	64	Häufigkeit()	62
Teil, fpart()	61	hexadezimal	
Funktionen und Variablen		Anzeige, ►Base16	19
kopieren	27	Anzeige, Oh	222
		holen/zurückgeben	
G		Nenner, getDenom()	67
a. Navasad	246	Zähler, getNum()	73
g, Neugrad	216	holeTast	67
ganze Zahl, int()	79	Hyperbolisch	
Ganzzahl teilen, intDiv()	79	Arkuskosinus, cosh ⁻¹ ()	30
ganzzahliger Teil, iPart()	82	Arkussinus, sinh ⁻¹ ()	162
gcd(), größter gemeinsamer Teiler	64	Arkustangens, tanh ⁻¹ ()	174
gehe zu, Goto	75 65	Cosinus, cosh()	30
geomCdf()	65	Sinus, sinh()	161
geomPdf()	65	Tangens, tanh()	174
Get	66, 235	3 , (,	
USU ISDOMI I NISONAT			
getDenom(), Nenner	67		

I		kumulierteSumme(), kumulierte	
		Summe	37
identity(), Einheitsmatrix	76		
if, If	76	L	
lf, if	76		
ifFn()	77	Lbl, Marke	84
imag(), Imaginärteil	78	lcm, kleinstes gemeinsames	
Imaginärteil, imag()	78	Vielfaches	85
in String, inString()	79	leere (ungültige) Elemente	241
inString(), in String	79	left(), links	85
int(), ganze Zahl	79	LibPriv	41
intDiv(), Ganzzahl teilen	79	LibPub	41
Integral, \$	211	libShortcut(), erstelle	
Interpolieren(), interpolieren	80	Tastaturbefehle für	
invF()	81	Bibliotheksobjekte	86
invNorm(), inverse kumulative		lineare Regression, LinRegAx	87
Normalverteilung)	82	lineare Regression, LinRegBx	86
invt()	82	Lineare Regression, LinRegBx	89
Invx²()	80	links, left()	85
iPart(), Ganzzahliger Teil	82	LinRegBx, lineare Regression	86
irr(), interner Zinsfluss	02	LinRegMx, lineare Regression	87
interner Zinsfluss, irr()	83	LinRegtIntervals, lineare Regression	89
isPrime(), Primzahltest	83	LinRegtTest	90
isVoid(), Test auf Ungültigkeit	84	linSolve()	92
isvoid(), rest aut offgultigkeit	04	list=mat(), Liste in Matrix	93
К			93
K		Liste in Matrix, list►mat() Liste, Elemente bedingt zählen	33
kartesische x-Koordinate. P►Rx()	123		
kartesische x-Koordinate, P►Rx() kartesische v-Koordinate, P►Rv()	123 124	Liste, Elemente zählen in	32
kartesische y-Koordinate, P►Ry()	124	Liste, Elemente zählen in Listen	32
kartesische y-Koordinate, P = Ry() Kehrwert, ^ ⁻¹		Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist()	32 92
kartesische y-Koordinate, P►Ry() Kehrwert, ^-¹ Ketten	124 219	Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist() erweitern/verketten, augment()	32
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate()	124 219 146-147	Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist() erweitern/verketten, augment() in absteigender Reihenfolge	32 92 15
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate()kleiner als, <	124 219 146-147 206	Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD	32 92
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤	124 219 146-147	Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge	32 92 15 164
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches,	124 219 146-147 206 206	Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA	92 15 164 164
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches,	124 219 146-147 206 206	Liste, Elemente zählen in	32 92 15 164
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr()	124 219 146-147 206 206 85 111	Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA	92 15 164 164
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr()	124 219 146-147 206 206	Liste, Elemente zählen in	92 15 164 164
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © komplex	124 219 146-147 206 206 85 111 222	Liste, Elemente zählen in	32 92 15 164 164 34
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj()	124 219 146-147 206 206 85 111	Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum()	32 92 15 164 164 34 37
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren	124 219 146-147 206 206 85 111 222 26	Liste, Elemente zählen in Listen Differenzen in einer Liste, Δlist() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum()	32 92 15 164 164 34 37 241
kartesische y-Koordinate, P¬Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren ¬Rad	124 219 146-147 206 206 85 111 222 26	Liste, Elemente zählen in	32 92 15 164 164 34 37 241 93
kartesische y-Koordinate, P¬Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren ¬Rad Korrelationsmatrix, corrMat()	124 219 146-147 206 206 85 111 222 26 134 27	Liste, Elemente zählen in Listen Differenzen in einer Liste, ∆list() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum() leere Elemente in Liste in Matrix, list►mat() Matrix in Liste, mat➡ist()	32 92 15 164 164 34 37 241 93 101
kartesische y-Koordinate, P¬Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren ¬Rad Korielationsmatrix, corrMat() Kosinus, cos()	124 219 146-147 206 206 85 111 222 26 134 27 28	Liste, Elemente zählen in Listen Differenzen in einer Liste, ∆list() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum() leere Elemente in Liste in Matrix, list►mat() Matrix in Liste, mat►list() Maximum, max() Minimum, min()	32 92 15 164 164 34 37 241 93 101 101
kartesische y-Koordinate, P¬Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren ¬Rad Korrelationsmatrix, corrMat() Kosinus, cos() Kotangens, cot()	124 219 146-147 206 206 85 111 222 26 134 27 28 31	Liste, Elemente zählen in Listen Differenzen in einer Liste, ∆list() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum() leere Elemente in Liste in Matrix, list►mat() Matrix in Liste, mat►list() Maximum, max()	32 92 15 164 164 34 37 241 93 101 101 105
kartesische y-Koordinate, P¬Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren ¬Rad Korrelationsmatrix, corrMat() Kosinus, cos() Kotangens, cot() Kreuzprodukt, crossP()	124 219 146-147 206 206 85 111 222 26 134 27 28 31 34	Liste, Elemente zählen in Listen Differenzen in einer Liste, ∆list() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum() leere Elemente in Liste in Matrix, list►mat() Matrix in Liste, mat►ist() Maximum, max() Minimum, min() neu, newList() Produkt, product()	32 92 15 164 164 34 37 241 93 101 101 105 113
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() Kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren ►Rad Korrelationsmatrix, corrMat() Kosinus, cos() Kotangens, cot() Kreuzprodukt, crossP() kubische Regression, CubicReg	124 219 146-147 206 206 85 111 222 26 134 27 28 31	Liste, Elemente zählen in Listen Differenzen in einer Liste, ∆list() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum() leere Elemente in Liste in Matrix, list►mat() Matrix in Liste, mat►list() Maximum, max() Minimum, min() neu, newList() Produkt, product() Skalarprodukt, dotP()	32 92 15 164 164 34 37 241 93 101 101 105 113 129
kartesische y-Koordinate, P¬Ry() Kehrwert, ^-1 Ketten drehen, rotate() kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren ¬Rad Korrelationsmatrix, corrMat() Kosinus, cos() Kotangens, cot() Kreuzprodukt, crossP() kubische Regression, CubicReg kumulierte Summe, cumulativeSum(124 219 146-147 206 206 85 111 222 26 134 27 28 31 34 36	Liste, Elemente zählen in Listen Differenzen in einer Liste, ∆list() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum() leere Elemente in Liste in Matrix, list►mat() Matrix in Liste, mat►ist() Maximum, max() Minimum, min() neu, newList() Produkt, product()	32 92 15 164 164 34 37 241 93 101 105 113 129 48
kartesische y-Koordinate, P►Ry() Kehrwert, ^-1 Ketten drehen, rotate() Kleiner als, < Kleiner oder gleich, ≤ kleinstes gemeinsames Vielfaches, lcm Kombinationen, nCr() Kommentar, © konjugierte, conj() konvertieren ►Rad Korrelationsmatrix, corrMat() Kosinus, cos() Kotangens, cot() Kreuzprodukt, crossP() kubische Regression, CubicReg	124 219 146-147 206 206 85 111 222 26 134 27 28 31 34	Liste, Elemente zählen in Listen Differenzen in einer Liste, ∆list() erweitern/verketten, augment() in absteigender Reihenfolge sortieren, SortD in aufsteigender Reihenfolge sortieren, SortA Kreuzprodukt, crossP() kumulierte Summe, cumulativeSum() leere Elemente in Liste in Matrix, list►mat() Matrix in Liste, mat►list() Maximum, max() Minimum, min() neu, newList() Produkt, product() Skalarprodukt, dotP() Summe, sum()	32 92 15 164 164 34 37 241 93 101 105 113 129 48 170

ln(), natürlicher Logarithmus	93	Eigenvektor, eigVc()	49
LnReg, logarithmische Regression	94	Eigenwert, eigVI()	50
Local, lokale Variable	95	Einheitsmatrix, identity()	76
Lock, Variable oder Variablengruppe		erweitern/verketten, augment()	15
sperren	96	füllen, Fill	57
LöFehler, Fehler löschen	24	kumulierte Summe,	
Logarithmen	93	cumulativeSum()	37
Logarithmische Regression, LnReg	94	Liste in Matrix, list►mat()	93
Logarithmus		Matrix in Liste, mat Hist()	101
Vorlage für	2	Matrixzeilenmultiplikation und -	
logische doppelte Implikation, ⇔	209	addition, mRowAdd()	107
logische Implikation, ⇒	208, 243	Maximum, max()	101
Logistic, logistische Regression	97	Minimum, min()	105
LogisticD, logistische Regression	98	neu, newMat()	113
Logistische Regression, Logistic	97	Produkt, product()	129
Logistische Regression, LogisticD	98	Punkt-Addition, .+	202
lokal, Local	95	Punkt-Division, ./	203
lokale Variable, Local	95	Punkt-Multiplikation, .*	203
Loop, Schleife	100	Punkt-Potenz, .^	203
löschen		Punkt-Subtraktion,	202
Variable, DelVar	42	QR-Faktorisierung, QR	130
Löschen	228	Spaltendimension, colDim()	25
Fehler, LöFehler	24	Spaltennorm, colNorm()	26
ungültige Elemente aus Liste	43	Summe, sum()	170
LU, untere/obere Matrixzerlegung	100	Summierung, sum()	171
zo, antere, obere matrixzentebanb .		Summer ung, sum ()	1,1
		Transponierte T	172
М		Transponierte, T	172
		Transponierte, Tuntere/obere Matrixzerlegung,	
Marke, Lbl	84	Transponierte, Tuntere/obere Matrixzerlegung, LU	100
	84 101	Transponierte, Tuntere/obere Matrixzerlegung, LU Untermatrix, subMat()1	100 70, 172
Marke, Lbl		Transponierte, T	100 70, 172 107
Marke, Lbl		Transponierte, T	100 70, 172 107 101
Marke, Lbl	101	Transponierte, T	100 70, 172 107 101 101
Marke, Lbl	101 139	Transponierte, T	100 70, 172 107 101 101 102
Marke, Lbl	101 139	Transponierte, T	100 70, 172 107 101 101 102 102
Marke, Lbl	101 139 150	Transponierte, T	100 70, 172 107 101 101 102 102 102
Marke, Lbl	101 139 150	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat()	100 70, 172 107 101 101 102 102 102 103
Marke, Lbl	101 139 150 4	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat()	100 70, 172 107 101 101 102 102 102 103 104
Marke, Lbl	101 139 150 4	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat()	100 70, 172 107 101 101 102 102 102 103 104 105
Marke, Lbl	101 139 150 4	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat()	100 70, 172 107 101 101 102 102 102 103 104 105
Marke, Lbl	101 139 150 4	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat() 1 Zeilenoperation, mRow()	100 70, 172 107 101 101 102 102 102 103 104 105
Marke, Lbl	101 139 150 4 4	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat() 1 Zeilenoperation, mRow()	100 70, 172 107 101 101 102 102 102 103 104 105 105 218
Marke, Lbl mat⇒list(), Matrix in Liste Matrix Diagonalform, ref() reduzierte Diagonalform, rref() Matrix (1 × 2) Vorlage für Matrix (2 × 1) Vorlage für Matrix (2 × 2) Vorlage für Matrix (m × n) Vorlage für Matrix (m×n) Vorlage für Matrix erstellen, constructMat()() Matrix in Liste, mat⇒list()	101 139 150 4 4 4	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat() 1 Zeilenoperation, mRow()	100 70, 172 107 101 101 102 102 102 103 104 105 105 218
Marke, Lbl mat≠list(), Matrix in Liste Matrix Diagonalform, ref() reduzierte Diagonalform, rref() Matrix (1 × 2) Vorlage für Matrix (2 × 1) Vorlage für Matrix (2 × 2) Vorlage für Matrix (m × n) Vorlage für Matrix (m × n) Matrix erstellen, constructMat()()	101 139 150 4 4 4 4 4 26	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat()	100 70, 172 107 101 101 102 102 102 103 104 105 105 218
Marke, Lbl mat⇒list(), Matrix in Liste Matrix Diagonalform, ref() reduzierte Diagonalform, rref() Matrix (1 × 2) Vorlage für Matrix (2 × 1) Vorlage für Matrix (2 × 2) Vorlage für Matrix (m × n) Vorlage für Matrix (m×n) Vorlage für Matrix erstellen, constructMat()() Matrix in Liste, mat⇒list()	101 139 150 4 4 4 4 26 101	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat() 1 Zeilenoperation, mRow() max(), Maximum Maximum, max() mean(), Mittellwert median(), Median Median, median() MedMed, Mittellinienregression mid(), Teil-String min(), Minimum Minimum, min() Minuten-Schreibweise, mirr(), modifizierter interner Zinsfluss mit, Mittellinienregression, MedMed	100 70, 172 107 101 101 102 102 103 104 105 105 218
Marke, Lbl mat⇒list(), Matrix in Liste Matrix Diagonalform, ref() reduzierte Diagonalform, rref() Matrix (1 × 2) Vorlage für Matrix (2 × 1) Vorlage für Matrix (2 × 2) Vorlage für Matrix (m × n) Vorlage für Matrix (m×n) Matrix erstellen, constructMat()() Matrix in Liste, mat⇒list() Matrixzeilenaddition, rowAdd()	101 139 150 4 4 4 4 4 26 101 149	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat() 1 Zeilenoperation, mRow() max(), Maximum Maximum, max() mean(), Mittelwert median(), Median Median, median() MedMed, Mittellinienregression mid(), Teil-String min(), Minimum Minimum, min() Minuten-Schreibweise, mirr(), modifizierter interner Zinsfluss mit, Mittellinienregression, MedMed Mittelwert, mean()	100 70, 172 107 101 101 102 102 103 104 105 105 218 106 220 103 102
Marke, Lbl mat⇒list(), Matrix in Liste Matrix Diagonalform, ref() reduzierte Diagonalform, rref() Matrix (1 × 2) Vorlage für Matrix (2 × 1) Vorlage für Matrix (2 × 2) Vorlage für Matrix (m × n) Vorlage für Matrix (m×n) Worlage für Matrix erstellen, constructMat()() Matrix in Liste, mat⇒list() Matrixzeilenaddition, rowAdd() Matrixzeilentausch, rowSwap()	101 139 150 4 4 4 4 4 26 101 149	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat() 1 Zeilenoperation, mRow() max(), Maximum Maximum, max() mean(), Mittelwert median(), Median Median, median() MedMed, Mittellinienregression mid(), Teil-String min(), Minimum Minimum, min() Minuten-Schreibweise, mirr(), modifizierter interner Zinsfluss mit, Mittellinienregression, MedMed Mittelwert, mean() mod(), Modulo	100 70, 172 107 101 101 102 102 103 104 105 105 218
Marke, Lbl mat⇒list(), Matrix in Liste Matrix Diagonalform, ref() reduzierte Diagonalform, rref() Matrix (1 × 2) Vorlage für Matrix (2 × 1) Vorlage für Matrix (2 × 2) Vorlage für Matrix (m × n) Vorlage für Matrix erstellen, constructMat()() Matrix in Liste, mat⇒list() Matrixzeilenaddition, rowAdd() Matrixzeilentausch, rowSwap() Matrizen	101 139 150 4 4 4 4 26 101 149 149	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat() 1 Zeilenoperation, mRow() max(), Maximum Maximum, max() mean(), Mittellwert median(), Median Median, median() MedMed, Mittellinienregression mid(), Teil-String min(), Minimum Minimum, min() Minuten-Schreibweise, mirr(), modifizierter interner Zinsfluss mit, Mittellinienregression, MedMed Mittelwert, mean() mod(), Modulo Modi	100 70, 172 107 101 101 102 102 103 104 105 105 218 106 220 103 102
Marke, Lbl mat⇒list(), Matrix in Liste Matrix Diagonalform, ref() reduzierte Diagonalform, rref() Matrix (1 × 2) Vorlage für Matrix (2 × 1) Vorlage für Matrix (2 × 2) Vorlage für Matrix (m × n) Vorlage für Matrix erstellen, constructMat()() Matrix in Liste, mat⇒list() Matrixeilenaddition, rowAdd() Matrizeilentausch, rowSwap() Matrizen Determinante, det()	101 139 150 4 4 4 4 4 26 101 149 149	Transponierte, T untere/obere Matrixzerlegung, LU Untermatrix, subMat() 1 Zeilenoperation, mRow() max(), Maximum Maximum, max() mean(), Mittelwert median(), Median Median, median() MedMed, Mittellinienregression mid(), Teil-String min(), Minimum Minimum, min() Minuten-Schreibweise, mirr(), modifizierter interner Zinsfluss mit, Mittellinienregression, MedMed Mittelwert, mean() mod(), Modulo	100 70, 172 107 101 101 102 102 103 104 105 105 218 106 220 103 102

()		nlichkeit)	
Modulo, mod()	106	normPdf()	
Moduseinstellungen, getMode()	72	(Wahrscheinlichkeitsdichte)	117
mRow(), Matrixzeilenoperation	107	nPr(), Permutationen	118
mRowAdd(),		npv(), Nettobarwert	119
Matrixzeilenmultiplikation		nSolve(), numerische Lösung	119
und -addition	107	numerisch	
Multipler linearer Regressions-t-Test	109	Ableitung, nDeriv() 1	113-114
multiplizieren, *	199	Ableitung, nDerivative()	112
MultReg (Mehrfachregression)	107	Integral, nInt()	114
MultRegIntervals()		Lösung, nSolve()	119
(Mehrfachregressionsinterv		5,	
all)	108	0	
MultRegTests()	109		
	100	Obergrenze, ceiling()	21, 34
N		Objekte	
		erstelle Tastaturbefehle für	
n-te Wurzel		Bibliothek	86
Vorlage für	2	oder (Boolesch), oder	121
nand, Boolescher Operator	110	oder, Boolescher Operator	121
natürlicher Logarithmus, ln()	93	OneVar, Statistik mit einer Variable	120
nCr(), Kombinationen	111	Operatoren	
nDerivative(), numerische Ableitung	112	Auswertungsreihenfolge	245
Negation, Eingabe von negativen		ord(), numerischer Zeichencode	123
Zahlen	246	P	
Nettobarwert, npv ()	119	•	
neu		P►Rx(), kartesische x-Koordinate	123
Liste, newList()	113	P►Ry(), kartesische y-Koordinate	124
Matrix, newMat()	113	Pdf()	61
Neugrad-Schreibweise, g	216	Permutationen, nPr()	118
newList(), neue Liste	113	piecewise() (Stückweise)	125
newMat(), neue Matrix	113	poissCdf()	125
nfMax(), numerisches		poissPdf()	125
Funktionsmaximum	113	polar	
nfMin(), numerisches		Vektoranzeige, ► Polar	125
Funktionsminimum	114	Polarkoordinate, R►Pr()	134
nicht, Boolescher Operator	117	Polarkoordinate, R►Pθ()	134
nInt(), numerisches Integral	114	polyEval(), Polynom auswerten	126
nom), Effektivzins in Nominalzins		Polynom auswerten, polyEval()	126
konvertieren	115	Polynome	
Nominalzinssatz, nom()	115	auswerten, polyEval()	126
nor, Boolescher Operator	115	PolyRoots()	127
norm(), Frobeniusnorm	116	Potenz von zehn, 10^()	219
Normalverteilung invertieren		Potenz, ^	201
(invNorm()	82	Potenzregression,	
Normalverteilungswahrscheinlichkeit,	44.5	PowerReg127, 141, 1	
normCdf()	116	PowerReg, Potenzregression	127
normCdf()		Prgm, Definiere Programm	128
(Normalverteilungswahrschei	116	Primzahltest, isPrime()	83

prodSeq()	129	randNorm(), Zufallsnorm	136
product(), Produkt	129	randPoly(), Zufallspolynom	137
Produkt ∏()		randSamp()	137
Vorlage für	5	RandSeed, Zufallszahl	137
Produkt, ∏()	212	real(), reel	137
Produkt, product()	129	rechts, right()80,	144-145
Programme		reduzierte Diagonalform, rref()	150
öffentliche Bibliothek definieren	41	reell, real()	137
Private Bibliothek definieren	41	ref(), Diagonalform	139
Programme und Programmieren		RefreshProbeVars	140
E/A-Bildschirm anzeigen, Anz	152	Regression vierter Ordnung,	
E/A-Bildschirm anzeigen, Zeige .	45	QuartReg	133
Fehler löschen, LöFehler	24	Regressionen	
programmieren		exponentielle, ExpReg	55
Daten anzeigen, Disp	45	kubische, CubicReg	36
Definiere Programm, Prgm	128	lineare Regression, LinRegAx	87
Fehler übergeben, ÜbgebFeh	124	lineare Regression, LinRegBx	86
Programmierung		Lineare Regression, LinRegBx	89
Daten anzeigen, Anz	152	logarithmische, LnReg	94
propFrac, echter Bruch	130	Logistic (Logistisch)	97
Prozent, %	204	logistische, Logistic	98
Punkt		Mittellinie, MedMed	103
Addition, .+	202	MultReg (Mehrfachregression)	107
Division, ./	203	Potenzregression,	107
Multiplikation, .*	203	PowerReg 127, 141,	1/2 175
Potenz, .^	203		-
Subtraktion,	202	quadratische, QuadReg	
Subtraction,	202	sinusförmige, SinReg	162
Q		vierter Ordnung, QuartReg	133
~		remain(), Rest	141
QR-Faktorisierung, QR	130	Request	141
QR,QR-Faktorisierung	130	RequestStr	143
Quadratische Regression, QuadReg	131	Rest, remain()	141
Quadratwurzel		Return, Rückgabe	144
Vorlage für	1	right(), rechts	144
Quadratwurzel, v()	211	right, right()	
Quadratwurzel, ‡()	165	rk23(), Runge-Kutta-Funktion	145
QuadReg, quadratische Regression .	131	rotate(), drehen	
QuartReg, Regression vierter		round(), runden	148
Ordnung	133	rowAdd(), Matrixzeilenaddition	149
Ordinang	133	rowDim(), Zeilendimension der	
R		Matrix	149
•		rowNorm(), Zeilennorm der Matrix	149
r, Bogenmaß	216	rowSwap(), Matrixzeilentausch	149
R►Pr(), Polarkoordinate	134	rref(), reduzierte Diagonalform	150
R►Pθ(), Polarkoordinate	134	Rückgabe, Return	144
rand (), Zufallszahl	135	runden, round()	148
randBin, Zufallszahl	135		
randInt(), ganzzahlige Zufallszahl	135		
randMat(), Zufallsmatrix	136		

schleife, Loop	100	Standardabweichung,	
Schreibweise Grad/Minute/Sekunde	218	stdDev() 167-2	168, 186
sec ⁻¹ (), Arkussekans	151	Statistik mit einer Variable,	
sec(), Sekans	150	OneVar	120
sech ⁻¹ (), Arkussekans hyperbolicus .	151	Varianz, variance()	187
sech(), Sekans hyperbolicus	151	Zufallsnorm, randNorm()	136
Sekunden-Schreibweise, "	218	Zufallszahl, RandSeed	137
seq(), Folge	153	Statistik mit einer Variable, OneVar	120
seqGen()	153	stdDevPop(), Populations-	
seqn()	154	Standardabweichung	167
sequence, seq()	3-154	stdDevSamp(), Stichproben-	
setMode(), Modus festlegen	155	Standardabweichung	168
shift(), verschieben	156	String	
sign(), Zeichen	158	Dimension, dim()	44
simult(), Gleichungssystem	159	Länge	44
sin ⁻¹ (), Arkussinus	160	string(), Ausdruck in String	169
sin(), Sinus	160	Stringlänge	44
sinh ⁻¹ (), Arkussinus hyperbolicus	162	strings	
sinh(), Sinus hyperbolicus	161	right, right()	51, 188
SinReg, sinusförmige Regression	162	Strings	•
Sinus, sin()	160	Ausdruck in String, string()	169
Sinusförmige Regression, SinReg	162	Format, format()	60
Skalar		Formatieren	60
Produkt, dotP()	48	in, inString	79
SortA, in aufsteigender Reihenfolge		links, left()	85
sortieren	164	rechts, right()80,	144-145
SortD, in absteigender Reihenfolge		String in Ausdruck, expr()	55
sortieren	164	Teil-String, mid()	104
sortieren		Umleitung, #	215
in absteigender Reihenfolge		verschieben, shift()	156
sortieren, SortD	164	Zeichencode, ord()	123
in aufsteigender Reihenfolge,		Zeichenstring, char()	22
SortA	164	Stückweise definierte Funktion (2	
speichern		Teile)	
Symbol, →	221	Vorlage für	2
Sprache		Stückweise definierte Funktion (n	
Sprachinformation abrufen	71	Teile)	
sqrt(), Quadratwurzel	165	Vorlage für	3
Standardabweichung, stdDev() 167-16		Student-t-	
stat.results	166	Wahrscheinlichkeitsdichte,	
stat.values	167	tPdf()	178
Statistik		subMat(), Untermatrix	170, 172
Ergebnisse mit zwei Variablen,		subtrahieren,	198
TwoVar	184	sum(), Summe	170
Fakultät,!	209	sumIf()	171
Kombinationen, nCr()	111	Summe ∑()	
Median, median()	102	Vorlage für	5

Summe der Tilgungszahlungen	214	ungültige Elemente	241
Summe der Zinszahlungen	213	ungültige Elemente, entfernen	43
Summe, ∑()	212 170	unitV(), EinheitsvektorunLock, Variable oder	186
sumSeq()	170	•	
sumseq()	1/2	Variablengruppe	186
Т		entsperren Untergrenze, floor()	59
		Untermatrix, subMat()	
t test, t-Test	180	Ontermatrix, Subwiat()	, 1/2
T, Transponierte	172	V	
Tage zwischen Daten, dbd()	38		
tan ⁻¹ (), Arkustangens	173	Variable	
tan(), Tangens	172	Name aus String erstellen	246
Tangens, tan()	172	Variable oder Funktion kopieren,	
tanh ⁻¹ (), Arkustangens hyperbolicus	174	CopyVar	27
tanh(), Tangens hyperbolicus	174	Variablen	
Tastenkürzel	243	alle einbuchstabigen löschen	24
Tastenkürzel, Tastatur	243	lokal, Local	95
tCdf(), Wahrscheinlichkeit einer	475	löschen, DelVar	42
Student t-Verteilung	175	Variablen und Funktionen	
Teil-String, mid()	104	kopieren	27
Test auf Ungültigkeit, isVoid()	84	Variablen und Variablengruppen	
Test_2S, Zwei-Stichproben F-Test	63	entsperren	186
Text, Befehl	175 176	Variablen und Variablengruppen	
tInterval, Konfidenzintervall t tInterval_2Samp, ZweiStichproben-t-	1/6	sperren	96
	177	Variablen, sperren und entsperren 72, 96	
Konfidenzintervall	177	Varianz, variance()	187
trace()	178 172	varPop() (Populationsvarianz)	186
Transponierte, T	172	varSamp(), Stichproben-Varianz	187
tTest, t-Test	180	Vektoren	
tTest 2Samp, Zwei-Stichproben-t-	100	Anzeige als Zylindervektor,	
Test	181	►Cylind	38
TVM-Argumente	183	Einheit, unitV()	186
tvmFV()	182	Kreuzprodukt, crossP()	34
tvml()	182	Skalarprodukt, dotP()	48
tvmN()	182	verschieben, shift()	156
tvmPmt()	183	Verteilungsfunktionen	24 02
tvmPV()	183	binomCdf()20, 8	
TwoVar, Ergebnisse mit zwei	103	binomPdf()	20
Variablen	184	invNorm()	82 82
variables:	101	invt()	80
U		normCdf()	80
		(Normalverteilungswahrschei	
ÜbgebFeh, Fehler übergeben	124	nlichkeit)	116
Umleitung, #	215	normPdf()	110
Umleitungsoperator (#)	246	(Wahrscheinlichkeitsdi	
umwandeln		chte)	117
►Grad (Neugrad)	75	poissCdf()	125
ungleich, ≠	205	poisseui()	123

poissPdf()	125	womit-Operator " "	220
tCdf()	175	womit-Operator,	
tPdf()	178	Auswerungsreihenfolge	245
χ²2way()	22		
χ^2 Cdf()	23	X	
χ²GOF()	23	2 -	
χ²Pdf()	24	x ² , Quadrat	202
void, test for	84	XNOR	209
Vorlagen		xor, Boolesches exklusives oder	190
Absolutwert	3-4	_	
Bestimmtes Integral	6	Z	
Bruch	1	Zähle Tage zwischen Daten, dbd()	38
e Exponent	2	zähle(), Elemente in einer Liste	30
erste Ableitung	5	zählen	32
Exponent	1	Zeichen	32
Gleichungssystem (2		String, char()	22
Gleichungen)	3	Zeichencode, ord()	123
Gleichungssystem (n		Zeichen, sign()	158
Gleichungen)	3	Zeichenfolgen	136
Logarithmus	2	zum Erstellen von	
Matrix (1 × 2)	4	Variablennamen	
Matrix (2 × 1)	4		246
Matrix (2 × 2)	4	verwenden	246 22
Matrix (m × n)	4	Zeichenstring, char()	
n-te Wurzel	2	Zeichnen	
Produkt ∏()	5	Zeige, Daten anzeigen	45
Quadratwurzel	1	Zeilendimension der Matrix, rowDim	4.40
Stückweise definierte Funktion		()	149
(2 Teile)	2	Zeilennorm der Matrix, rowNorm()	149
Stückweise definierte Funktion		Zeitwert des Geldes, Anzahl	
(n Teile)	3	Zahlungen	182
Summe Σ()	5	Zeitwert des Geldes, Barwert	183
zweite Ableitung	6	Zeitwert des Geldes, Endwert	182
C		Zeitwert des Geldes, Zahlungsbetrag	183
W		Zeitwert des Geldes, Zinsen	182
		zInterval, z-Konfidenzintervall	191
Wahrscheinlichkeit einer Student-t-		zInterval_1Prop, z-Konfidenzintervall	
Verteilung, tCdf()	175	für eine Proportion	192
Wahrscheinlichkeitsdichte, normPdf(zInterval_2Prop, z-Konfidenzintervall	
)	117	für zwei Proportionen	192
Warncodes und -meldungen	260	zInterval_2Samp, z-	
warnCodes(), Warning codes	188	Konfidenzintervall für zwei	
Warte-Befehl	188	Stichproben	193
wenn, when()	189	zTest	194
when(), wenn	189	zTest_1Prop, z-Test für eine	
while, While	190	Proportion	195
While, while	190	zTest_2Prop, z-Test für zwei	
winkel, ∠	218	Proportionen	196
Winkel, angle()	9	zTest 2Samn z-Test für zwei	106

Stichproben	
Zufallsmatrix, randMat()	136
Zufallsnorm, randNorm()	136
Zufallspolynom, randPoly()	137
Zufallsstichprobe	137
Zufallszahl, RandSeed	137
zuweisen, :=	222
Zwei-Stichproben F-Test	63
zweite Ableitung	
Vorlage für	6
Zyklus, Cycle	37
Λ	
-	
Δlist(), Listendifferenz	92
X	
χ²2way	22
χ^2 Cdf()	23
χ²GOF	23
χ²Pdf()	24